Javier I Enrione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4270918/publications.pdf

Version: 2024-02-01

51	1,205	22	32
papers	citations	h-index	g-index
53	53	53	1616
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Industrial avocado waste: Functional compounds preservation by convective drying process. Journal of Food Engineering, 2017, 198, 81-90.	2.7	110
2	Characteristics of hydroxy propyl methyl cellulose (HPMC) based edible film developed for blueberry coatings. Procedia Food Science, 2011, 1, 287-293.	0.6	62
3	Influence of extraction variables on the structure and physical properties of salmon gelatin. Food Hydrocolloids, 2017, 71, 118-128.	5. 6	55
4	Edible Scaffolds Based on Non-Mammalian Biopolymers for Myoblast Growth. Materials, 2017, 10, 1404.	1.3	54
5	Sorption Behavior of Mixtures of Glycerol and Starch. Journal of Agricultural and Food Chemistry, 2007, 55, 2956-2963.	2.4	52
6	Rapid fabrication of reinforced and cell-laden vascular grafts structurally inspired by human coronary arteries. Nature Communications, 2019, 10, 3098.	5.8	46
7	State diagram of salmon (<i>Salmo salar</i>) gelatin films. Journal of the Science of Food and Agriculture, 2011, 91, 2558-2565.	1.7	43
8	Wetting behavior of chitosan solutions on blueberry epicarp with or without epicuticular waxes. LWT - Food Science and Technology, 2011, 44, 1449-1457.	2.5	37
9	A New Edible Film to Produce In Vitro Meat. Foods, 2020, 9, 185.	1.9	34
10	Using RGB Image Processing for Designing an Alginate Edible Film. Food and Bioprocess Technology, 2012, 5, 1511-1520.	2.6	33
11	Quinoa proteins (Chenopodium quinoa Willd.) fractionated by ultrafiltration using ceramic membranes: The role of pH on physicochemical and conformational properties. Food and Bioproducts Processing, 2017, 102, 20-30.	1.8	33
12	Quality Parameters of Six Cultivars of Blueberry Using Computer Vision. International Journal of Food Science, 2013, 2013, 1-8.	0.9	32
13	Sorption and Diffusional Studies of Extruded Waxy Maize Starch-Glycerol Systems. Starch/Staerke, 2007, 59, 1-9.	1.1	31
14	A nanostructural investigation of glassy gelatin oligomers: molecular organization and interactions with low molecular weight diluents. New Journal of Physics, 2012, 14, 035016.	1.2	31
15	State diagram, sorption isotherm and color of blueberries as a function of water content. Thermochimica Acta, 2013, 570, 8-15.	1.2	30
16	Stress transfer and matrix-cohesive fracture mechanism in microfibrillated cellulose-gelatin nanocomposite films. Carbohydrate Polymers, 2018, 195, 89-98.	5.1	29
17	Molecular configuration of gelatin–water suspensions at low concentration. Food Hydrocolloids, 2014, 39, 171-179.	5. 6	27
18	Characterization of a Gelatin/Chitosan/Hyaluronan scaffold-polymer. Electronic Journal of Biotechnology, 2010, 13, 0-0.	1.2	26

#	Article	IF	CITATIONS
19	Exploiting the natural poly(3-hydroxyalkanoates) production capacity of Antarctic <i>Pseudomonas</i> strains: from unique phenotypes to novel biopolymers. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1139-1153.	1.4	25
20	Evaluation of Surface Free Energy of Various Fruit Epicarps Using Acid–Base and Zisman Approaches. Food Biophysics, 2011, 6, 349-358.	1.4	24
21	Effect of physical state of gelatin-plasticizer based films on to the occurrence of Maillard reactions. Food Chemistry, 2015, 175, 478-484.	4.2	23
22	Synergistic effects of crosslinking and chitosan molecular weight on the microstructure, molecular mobility, thermal and sorption properties of porous chitosan/gelatin/hyaluronic acid scaffolds. Journal of Applied Polymer Science, 2017, 134, .	1.3	22
23	Rheological and Structural Study of Salmon Gelatin with Controlled Molecular Weight. Polymers, 2020, 12, 1587.	2.0	22
24	Prediction of the Glass Transition Temperature on Extruded Waxy Maize and Rice Starches in Presence of Glycerol. Food and Bioprocess Technology, 2010, 3, 791-796.	2.6	21
25	Designing a gelatin/chitosan/hyaluronic acid biopolymer using a thermophysical approach for use in tissue engineering. Bioprocess and Biosystems Engineering, 2013, 36, 1947-1956.	1.7	20
26	Assessment of gelatin–chitosan interactions in films by a chemometrics approach. CYTA - Journal of Food, 2015, 13, 227-234.	0.9	20
27	Structural Relaxation of Salmon Gelatin Films in the Glassy State. Food and Bioprocess Technology, 2012, 5, 2446-2453.	2.6	19
28	A non-destructive digital imaging method to predict immobilized yeast-biomass. LWT - Food Science and Technology, 2009, 42, 1444-1449.	2.5	18
29	Stress Transfer Quantification in Gelatin-Matrix Natural Composites with Tunable Optical Properties. Biomacromolecules, 2015, 16, 1784-1793.	2.6	16
30	Re-Epithelialization Appraisal of Skin Wound in a Porcine Model Using a Salmon-Gelatin Based Biomaterial as Wound Dressing. Pharmaceutics, 2019, 11, 196.	2.0	16
31	Physicochemical and antimicrobial properties of bovine and salmon gelatin-chitosan films. CYTA - Journal of Food, 2013, 11, 366-378.	0.9	15
32	Cold-adaptation of a methacrylamide gelatin towards the expansion of the biomaterial toolbox for specialized functionalities in tissue engineering. Materials Science and Engineering C, 2019, 102, 373-390.	3.8	15
33	Quality assessment of blueberries by computer vision. Procedia Food Science, 2011, 1, 421-425.	0.6	12
34	Improvement of human skin cell growth by radiation-induced modifications of a Ge/Ch/Ha scaffold. Bioprocess and Biosystems Engineering, 2013, 36, 317-324.	1.7	12
35	A novel biomaterial based on salmon-gelatin and its in vivo evaluation as sterile wound-dressing. Materials Letters, 2018, 212, 159-164.	1.3	12
36	Modelling the growth of in-vitro meat on microstructured edible films. Journal of Food Engineering, 2021, 307, 110662.	2.7	12

#	Article	IF	CITATIONS
37	About the endothermal transitions of galactomannans: A multi-analytical DSC, LF-1H NMR and DMA study. Carbohydrate Polymers, 2019, 211, 31-38.	5.1	11
38	Effect of polyols on the molecular organization and thermodynamic properties of low water content gelatin oligomers. Polymer, 2014, 55, 6827-6836.	1.8	10
39	Rapid prediction of moisture content of quinoa (Chenopodium quinoa Willd.) flour by Fourier transform infrared (FTIR) spectroscopy. Journal of Cereal Science, 2016, 71, 246-249.	1.8	10
40	Interaction and fragility study in salmon gelatin-oligosaccharide composite films at low moisture conditions. Food Hydrocolloids, 2019, 97, 105207.	5.6	10
41	Characterization and Testing of a Novel Sprayable Crosslinked Edible Coating Based on Salmon Gelatin. Coatings, 2019, 9, 595.	1.2	10
42	Characterization of salmon gelatin based film on antimicrobial properties of chitosan against E. coli. Procedia Food Science, 2011, 1, 399-403.	0.6	9
43	Thermal transitions of pulp and cuticle of blueberries. Thermochimica Acta, 2011, 525, 56-61.	1.2	9
44	Reduction of enthalpy relaxation in gelatine films by addition of polyols. International Journal of Biological Macromolecules, 2018, 109, 634-638.	3.6	9
45	Effect of glycerol on water sorption of bovine gelatin films in the glassy state. Procedia Food Science, 2011, 1, 267-274.	0.6	8
46	Improvement of biomaterials used in tissue engineering by an ageing treatment. Bioprocess and Biosystems Engineering, 2015, 38, 777-785.	1.7	8
47	Mechanical and Structural Stability of an Extruded Starch-protein-polyol Food System. Journal of Food Research, 2012, 1, .	0.1	5
48	Influence of Glassy or Rubbery State on the Antimicrobial Activity of Chitosan-gelatin Films. Journal of Food Research, 2012, 1, 184.	0.1	3
49	Anatase Incorporation to Bioactive Scaffolds Based on Salmon Gelatin and Its Effects on Muscle Cell Growth. Polymers, 2020, 12, 1943.	2.0	3
50	Natural food colorant from blackcurrant sprayâ€dried powder obtained by enzymatic treatment: Characterization and acceptability. Journal of Food Processing and Preservation, 2021, 45, .	0.9	3
51	Brama australis gel obtention and rheological characterization. Procedia Food Science, $2011, 1, 302-307$.	0.6	0