

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4270827/publications.pdf Version: 2024-02-01

KEVE VI

#	Article	IF	CITATIONS
1	An Ancient Mechanism Controls the Development of Cells with a Rooting Function in Land Plants. Science, 2007, 316, 1477-1480.	12.6	402
2	OsPTF1, a Novel Transcription Factor Involved in Tolerance to Phosphate Starvation in Rice. Plant Physiology, 2005, 138, 2087-2096.	4.8	323
3	A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nature Genetics, 2010, 42, 264-267.	21.4	295
4	Characterization of a subâ€family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. Plant Journal, 2008, 54, 965-975.	5.7	269
5	SPX4 Negatively Regulates Phosphate Signaling and Homeostasis through Its Interaction with PHR2 in Rice Â. Plant Cell, 2014, 26, 1586-1597.	6.6	256
6	A Rice Glutamate Receptor–Like Gene Is Critical for the Division and Survival of Individual Cells in the Root Apical Meristem. Plant Cell, 2006, 18, 340-349.	6.6	152
7	Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. Plant Physiology, 2015, 168, 1762-1776.	4.8	152
8	OsARM1, an R2R3 MYB Transcription Factor, Is Involved in Regulation of the Response to Arsenic Stress in Rice. Frontiers in Plant Science, 2017, 8, 1868.	3.6	150
9	QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theoretical and Applied Genetics, 2000, 100, 1295-1303.	3.6	134
10	Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theoretical and Applied Genetics, 2003, 107, 1505-1515.	3.6	133
11	MicroRNA166 Modulates Cadmium Tolerance and Accumulation in Rice. Plant Physiology, 2018, 177, 1691-1703.	4.8	125
12	Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9571-9576.	7.1	123
13	The Rice CK2 Kinase Regulates Trafficking of Phosphate Transporters in Response to Phosphate Levels. Plant Cell, 2015, 27, 711-723.	6.6	120
14	Identification of vacuolar phosphate efflux transporters in land plants. Nature Plants, 2019, 5, 84-94.	9.3	115
15	Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theoretical and Applied Genetics, 2001, 103, 104-111.	3.6	112
16	ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice. Plant Cell, 2017, 29, 560-574.	6.6	112
17	Regulation of the expression of OsIPS1 and OsIPS2 in rice via systemic and local Pi signalling and hormones. Plant, Cell and Environment, 2005, 28, 353-364.	5.7	107
18	Phospho <i>enol</i> pyruvate Carboxylase in Arabidopsis Leaves Plays a Crucial Role in Carbon and Nitrogen Metabolism. Plant Physiology, 2015, 167, 671-681.	4.8	105

Κέκε Υι

#	Article	IF	CITATIONS
19	Cytokinin represses phosphate-starvation response through increasing of intracellular phosphate level. Plant, Cell and Environment, 2006, 29, 1924-1935.	5.7	97
20	A Functional Antagonistic Relationship between Auxin and Mitochondrial Retrograde Signaling Regulates <i>Alternative Oxidase1a</i> Expression in Arabidopsis Â. Plant Physiology, 2014, 165, 1233-1254.	4.8	87
21	Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components. Journal of Experimental Botany, 2003, 55, 137-143.	4.8	80
22	RSL genes are sufficient for rhizoid system development in early diverging land plants. Development (Cambridge), 2011, 138, 2273-2281.	2.5	79
23	An SPX-RLI1 Module Regulates Leaf Inclination in Response to Phosphate Availability in Rice. Plant Cell, 2018, 30, 853-870.	6.6	73
24	Two RING-Finger Ubiquitin E3 Ligases Regulate the Degradation of SPX4, An Internal Phosphate Sensor, for Phosphate Homeostasis and Signaling in Rice. Molecular Plant, 2019, 12, 1060-1074.	8.3	69
25	Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice. Plant Molecular Biology, 2017, 93, 327-340.	3.9	68
26	Genetic manipulation of a high-affinity PHR1 target cis-element to improve phosphorous uptake in Oryza sativa L Plant Molecular Biology, 2015, 87, 429-440.	3.9	53
27	OsGLU3, a Putative Membrane-Bound Endo-1,4-Beta-Glucanase, Is Required for Root Cell Elongation and Division in Rice (Oryza sativa L.). Molecular Plant, 2012, 5, 176-186.	8.3	52
28	Analysis of transcriptome in hickory (Carya cathayensis), and uncover the dynamics in the hormonal signaling pathway during graft process. BMC Genomics, 2016, 17, 935.	2.8	44
29	The Function of LPR1 is Controlled by an Element in the Promoter and is Independent of SUMO E3 Ligase SIZ1 in Response to Low Pi Stress in Arabidopsis thaliana. Plant and Cell Physiology, 2010, 51, 380-394.	3.1	43
30	A reciprocal inhibitory module for Pi and iron signaling. Molecular Plant, 2022, 15, 138-150.	8.3	43
31	Allelochemical p-hydroxybenzoic acid inhibits root growth via regulating ROS accumulation in cucumber (Cucumis sativus L.). Journal of Integrative Agriculture, 2020, 19, 518-527.	3.5	40
32	cDNA-AFLP analysis of inducible gene expression in rice seminal root tips under a water deficit. Gene, 2003, 314, 141-148.	2.2	37
33	Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms. Journal of Hazardous Materials, 2016, 316, 77-86.	12.4	37
34	Molecular regulation of zinc deficiency responses in plants. Journal of Plant Physiology, 2021, 261, 153419.	3.5	34
35	The Promoter Structure Differentiation of a MYB Transcription Factor RLC1 Causes Red Leaf Coloration in Empire Red Leaf Cotton under Light. PLoS ONE, 2013, 8, e77891.	2.5	29
36	Modulating the root elongation by phosphate/nitrogen starvation in an OsGLU3 dependant way in rice. Plant Signaling and Behavior, 2012, 7, 1144-1145.	2.4	25

Κεκε Υι

#	Article	IF	CITATIONS
37	Loss of two families of SPX domain-containing proteins required for vacuolar polyphosphate accumulation coincides with the transition to phosphate storage in green plants. Molecular Plant, 2021, 14, 838-846.	8.3	24
38	Alternative splicing of <i>REGULATOR OF LEAF INCLINATION 1</i> modulates phosphate starvation signaling and growth in plants. Plant Cell, 2022, 34, 3319-3338.	6.6	24
39	OsCYCP1;1, a PHO80 homologous protein, negatively regulates phosphate starvation signaling in the roots of rice (Oryza sativa L.). Plant Molecular Biology, 2014, 86, 655-669.	3.9	16
40	Functional Analysis of Phosphate Transporter OsPHT4 Family Members in Rice. Rice Science, 2020, 27, 493-503.	3.9	16
41	Rice and Arabidopsis homologs of yeast CHROMOSOME TRANSMISSION FIDELITY PROTEIN 4 commonly interact with Polycomb complexes but exert divergent regulatory functions. Plant Cell, 2021, 33, 1417-1429.	6.6	16
42	Insights of intracellular/intercellular phosphate transport and signaling in unicellular green algae and multicellular land plants. New Phytologist, 2021, 232, 1566-1571.	7.3	16
43	The Effects of Organic and Mineral Fertilization on Soil Enzyme Activities and Bacterial Community in the Below- and Above-Ground Parts of Wheat. Agronomy, 2020, 10, 1452.	3.0	15
44	Strategies for improving fertilizer phosphorus use efficiency in Chinese cropping systems. Frontiers of Agricultural Science and Engineering, 2019, 6, 341.	1.4	14
45	Comparative mapping of QTLs for Al tolerance in rice and identification of positional Al-induced genes. Journal of Zhejiang University Science B, 2004, 5, 634-643.	0.4	14
46	Ammonium affects cell viability to inhibit root growth in Arabidopsis. Journal of Zhejiang University: Science B, 2011, 12, 477-484.	2.8	13
47	QTLs for nitrate induced elongation and initiation of lateral roots in rice (Oryza sativa L.). Plant and Soil, 2004, 263, 229-237.	3.7	12
48	Arabidopsis CAMTA3/SR1 is involved in drought stress tolerance and ABA signaling. Plant Science, 2022, 319, 111250.	3.6	11
49	OsCYCP4s coordinate phosphate starvation signaling with cell cycle progression in rice. Journal of Integrative Plant Biology, 2020, 62, 1017-1033.	8.5	8
50	A semi-dominant mutation in a CC-NB-LRR-type protein leads to a short-root phenotype in rice. Rice, 2018, 11, 54.	4.0	7
51	Revealing the underlying molecular basis of phosphorus recycling in the green manure crop Astragalus sinicus. Journal of Cleaner Production, 2022, 341, 130924.	9.3	7
52	Seminal, adventitious and lateral root growth and physiological responses in rice to upland conditions. Journal of Zhejiang University: Science A, 2003, 4, 469-473.	2.4	5
53	Effects of long-term organic amendment on the fertility of soil, nodulation, yield, and seed quality of soybean in a soybean-wheat rotation system. Journal of Soils and Sediments, 2021, 21, 1385-1394.	3.0	5
54	A spatial–temporal understanding of gene regulatory networks and NtARF-mediated regulation of potassium accumulation in tobacco. Planta, 2022, 255, 9.	3.2	5

Κέκε Υι

#	Article	IF	CITATIONS
55	Internal phosphate starvation signaling and external phosphate availability have no obvious effect on the accumulation of cadmium in rice. Journal of Integrative Agriculture, 2019, 18, 2153-2161.	3.5	4
56	OsTGAL1 suppresses the resistance of rice to bacterial blight disease by regulating the expression of salicylic acid glucosyltransferase OsSGT1. Plant, Cell and Environment, 2022, 45, 1584-1602.	5.7	4
57	Vacuolar phosphate transporters account for variation in phosphate accumulation in Astragalus sinicus cultivars. Crop Journal, 2021, 9, 227-237.	5.2	2
58	Unloading phosphate for starch synthesis in cereal grains. Molecular Plant, 2021, 14, 1232-1233.	8.3	2
59	Root Epidermal Development inArabidopsis. , 0, , 64-82.		1
60	Effect of Exogenous Ferrous Sulfate Treatment on Edible Rice. American Journal of Food Technology, 2016, 11, 165-170.	0.2	1
61	Halorubrum salipaludis sp. nov., isolated from the saline–alkaline soil. Archives of Microbiology, 2022, 204, 103.	2.2	1