Mathieu Frégnaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4270313/publications.pdf

Version: 2024-02-01

		1039880	887953
32	311	9	17
papers	citations	h-index	g-index
32	32	32	659
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Versatile perovskite solar cell encapsulation by low-temperature ALD-Al ₂ O ₃ with long-term stability improvement. Sustainable Energy and Fuels, 2018, 2, 2468-2479.	2.5	66
2	A novel 2-step ALD route to ultra-thin MoS ₂ films on SiO ₂ through a surface organometallic intermediate. Nanoscale, 2017, 9, 538-546.	2.8	55
3	Size-controlled synthesis of ZnO quantum dots in microreactors. Nanotechnology, 2014, 25, 145606.	1.3	33
4	Transfer of Epitaxial SrTiO ₃ Nanothick Layers Using Water-Soluble Sacrificial Perovskite Oxides. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8466-8474.	4.0	22
5	Ultra-clean high-mobility graphene on technologically relevant substrates. Nanoscale, 2022, 14, 2167-2176.	2.8	22
6	XPS monitoring of SrVO3 thin films from demixing to air ageing: The asset of treatment in water. Applied Surface Science, 2021, 553, 149536.	3.1	15
7	Three dimensional resistance mapping of self-organized Sr3V2O8 nanorods on metallic perovskite SrVO3 matrix. Applied Surface Science, 2020, 510, 145522.	3.1	14
8	Surface Characterizations and Selective Etching of Srâ∈Rich Segregation on Top of SrVO 3 Thinâ∈Films Grown by Pulsed Laser Deposition. ChemNanoMat, 2019, 5, 674-681.	1.5	13
9	Carrier gradients and the role of charge selective contacts in lateral heterojunction all back contact perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100520.	2.8	12
10	Free-standing electronic character of monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>:mn\>1<.am:</td><td>nl:m/sub></td></mml:mn></mml:msub></mml:math>	:m n \> 1<.a m:	nl:m/sub>
11	Physical and Chemical Analyses on Single-Source Precursor-Grown CdS Semiconductor Nanomaterials. Journal of Physical Chemistry C, 2010, 114, 17318-17323.	1.5	8
12	Ion beam synthesis of embedded IIIâ€As nanocrystals in silicon substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 55-59.	0.8	7
13	Gallium-containing sulfide binary and ternary materials by atomic layer deposition: precursor reactivities and growth fine chemistries. Materials Today Chemistry, 2018, 10, 142-152.	1.7	6
14	Synthesis and Characterization of Carbon/Nitrogen/Iron Based Nanoparticles by Laser Pyrolysis as Non-Noble Metal Electrocatalysts for Oxygen Reduction. Journal of Carbon Research, 2018, 4, 43.	1.4	5
15	Highly Active, High Specific Surface Area Fe/C/N ORR Electrocatalyst from Liquid Precursors by Combination of CO2 Laser Pyrolysis and Single NH3 Thermal Post-Treatment. Journal of Carbon Research, 2019, 5, 26.	1.4	4
16	Fast-grown CdS quantum dots: Single-source precursor approach vs microwave route. Materials Chemistry and Physics, 2013, 142, 52-60.	2.0	3
17	Coupled time resolved and high frequency modulated photoluminescence probing surface passivation of highly doped n-type InP samples. Journal of Applied Physics, 2021, 129, .	1.1	3
18	Size and quality control of fast grown CdS quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1764-1767.	0.8	2

#	Article	IF	CITATIONS
19	Influence of doping on the optical properties of silicon nanocrystals embedded in SiO2. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 80-83.	0.8	2
20	Direct Writing on Copper Ion Doped Silica Films by Electrogeneration of Metallic Microstructures. Journal of Physical Chemistry C, 2017, 121, 1129-1139.	1.5	2
21	XPS study during a soft and progressive sputtering of a monolayer on indium phosphide by argon cluster bombardment. Surface and Interface Analysis, 2018, 50, 1163-1167.	0.8	2
22	lonic Bombardment to Tune the Electrochemical Properties of a Semiconductor. ECS Transactions, 2019, 89, 9-15.	0.3	2
23	On the equilibrium electrostatic potential and lightâ€induced charge redistribution in halide perovskite structures. Progress in Photovoltaics: Research and Applications, 2022, 30, 994-1002.	4.4	2
24	Coupling GD-OES and XPS profiling to perform advanced physico-chemical characterizations of III-V layers for photovoltaic applications. , 2018, , .		1
25	Formation of a Singleâ€Crystal Aluminumâ€Based MOF Nanowire with Graphene Oxide Nanoscrolls as Structureâ€Directing Agents. Angewandte Chemie, 2020, 132, 10439-10444.	1.6	1
26	Study of Seed-Layer Stability on Copper Electrolytic Bath. ECS Transactions, 2017, 77, 133-142.	0.3	0
27	Effect of a Thin Film of Polypolyphosphazene on the pH Response of InP. ECS Transactions, 2017, 77, 145-152.	0.3	0
28	XPS profiling study of Al $<$ inf $>$ 2 $<$ /inf $>$ 0 $<$ inf $>$ 3 $<$ /inf $>$ passivation layers for high efficiency n-PERT and PERC solar cells. , 2018, , .		0
29	Nanoscale Wet Chemical Engineering of III-V Quantum Dots for Emerging Solar Applications. ECS Transactions, 2019, 89, 37-46.	0.3	O
30	Band Alignment of n- and p- InP at Electrolyte and Ultra High Vacuum Intrefaces: Correlation between the Open Circuit Potential under Illumination and XPS Photopeak Energy Separations. ECS Transactions, 2019, 89, 1-8.	0.3	0
31	Cross-characterization methods to obtain an "absolute―quantification of Cu(In,Ga)Se2 in-depth and at the surface. , 2019, , .		0
32	Improving the Activity of Fe/C/N ORR Electrocatalyst Using Double Ammonia Promoted CO2 Laser Pyrolysis. Journal of Carbon Research, 2020, 6, 63.	1.4	0