
Mehmet Kahraman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4270161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface-Enhanced Raman Scattering of Bacteria in Microwells Constructed from Silver Nanoparticles. Journal of Nanotechnology, 2012, 2012, 1-7.	3.4	185
2	Fundamentals and applications of SERS-based bioanalytical sensing. Nanophotonics, 2017, 6, 831-852.	6.0	141
3	Interaction of multi-functional silver nanoparticles with living cells. Nanotechnology, 2010, 21, 175104.	2.6	133
4	Convective Assembly of Bacteria for Surface-Enhanced Raman Scattering. Langmuir, 2008, 24, 894-901.	3.5	123
5	Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering. Analytical and Bioanalytical Chemistry, 2009, 395, 2559-2567.	3.7	122
6	Fabrication and Characterization of Flexible and Tunable Plasmonic Nanostructures. Scientific Reports, 2013, 3, 3396.	3.3	114
7	Reproducible Surface-Enhanced Raman Scattering Spectra of Bacteria on Aggregated Silver Nanoparticles. Applied Spectroscopy, 2007, 61, 479-485.	2.2	101
8	Living Fungi Cells Encapsulated in Polyelectrolyte Shells Doped with Metal Nanoparticles. Langmuir, 2009, 25, 4628-4634.	3.5	86
9	Label-Free Detection of Proteins from Self-Assembled Protein-Silver Nanoparticle Structures using Surface-Enhanced Raman Scattering. Analytical Chemistry, 2010, 82, 7596-7602.	6.5	82
10	Thickness of a metallic film, in addition to its roughness, plays a significant role in SERS activity. Scientific Reports, 2015, 5, 11644.	3.3	69
11	Identification of methicillin-resistant <i>Staphylococcus aureus</i> bacteria using surface-enhanced Raman spectroscopy and machine learning techniques. Analyst, The, 2020, 145, 7559-7570.	3.5	67
12	On Sample Preparation for Surface-Enhanced Raman Scattering (SERS) of Bacteria and the Source of Spectral Features of the Spectra. Applied Spectroscopy, 2011, 65, 500-506.	2.2	64
13	Characterization of Thermophilic Bacteria Using Surface-Enhanced Raman Scattering. Applied Spectroscopy, 2008, 62, 1226-1232.	2.2	62
14	The influence of the surface chemistry of silver nanoparticles on cell death. Nanotechnology, 2012, 23, 375102.	2.6	58
15	Differentiation of Healthy Brain Tissue and Tumors Using Surface-Enhanced Raman Scattering. Applied Spectroscopy, 2009, 63, 1095-1100.	2.2	56
16	Drug-resistant Staphylococcus aureus bacteria detection by combining surface-enhanced Raman spectroscopy (SERS) and deep learning techniques. Scientific Reports, 2021, 11, 18444.	3.3	52
17	Surface-Enhanced Raman Scattering on Aggregates of Silver Nanoparticles with Definite Size. Journal of Physical Chemistry C, 2008, 112, 10338-10343.	3.1	49
18	Silver Nanoparticle Thin Films with Nanocavities for Surfaceâ€Enhanced Raman Scattering. ChemPhysChem, 2008, 9, 902-910.	2.1	48

Mehmet Kahraman

#	Article	IF	CITATIONS
19	Multiplex identification of bacteria in bacterial mixtures with surfaceâ€enhanced Raman scattering. Journal of Raman Spectroscopy, 2010, 41, 484-489.	2.5	47
20	Experimental parameters influencing surface-enhanced Raman scattering of bacteria. Journal of Biomedical Optics, 2007, 12, 054015.	2.6	45
21	Characterization of Yeast Species Using Surface-Enhanced Raman Scattering. Applied Spectroscopy, 2009, 63, 1276-1282.	2.2	39
22	Surface-Enhanced Raman Scattering of Rat Tissues. Applied Spectroscopy, 2009, 63, 662-668.	2.2	33
23	Rapid identification of bacteria and yeast using surfaceâ€enhanced Raman scattering. Surface and Interface Analysis, 2010, 42, 462-465.	1.8	32
24	Inexpensive and Flexible SERS Substrates on Adhesive Tape Based on Biosilica Plasmonic Nanocomposites. ACS Applied Nano Materials, 2018, 1, 5316-5326.	5.0	32
25	Pluronic Block Copolymer-Mediated Interactions of Organic Compounds with Noble Metal Nanoparticles for SERS Analysis. Langmuir, 2010, 26, 5153-5159.	3.5	31
26	Label-free and direct protein detection on 3D plasmonic nanovoid structures using surface-enhanced Raman scattering. Analytica Chimica Acta, 2015, 856, 74-81.	5.4	31
27	Oligonucleotide-Mediated Au–Ag Core–Shell Nanoparticles. Plasmonics, 2009, 4, 293-301.	3.4	27
28	Size Effect of 3D Aggregates Assembled from Silver Nanoparticles on Surfaceâ€Enhanced Raman Scattering. ChemPhysChem, 2009, 10, 537-542.	2.1	26
29	The Solid Phase Extraction of Lead Using Silver Nanoparticles – Attached to Silica Gel Prior to its Determination by FAAS. Current Analytical Chemistry, 2009, 5, 352-357.	1.2	25
30	Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering. Analyst, The, 2013, 138, 2906.	3.5	25
31	Fabrication and characterization of three-dimensional silver nanodomes: Application for alkaline water electrolysis. International Journal of Hydrogen Energy, 2017, 42, 2476-2484.	7.1	22
32	FAAS slurry analysis of lead and copper ions preconcentrated on titanium dioxide nanoparticles coated with a silver shell and modified with cysteamine. Mikrochimica Acta, 2011, 173, 495-502.	5.0	21
33	The effect of 3D silver nanodome size on hydrogen evolution activity in alkaline solution. International Journal of Hydrogen Energy, 2018, 43, 10586-10594.	7.1	21
34	Differential separation of protein mixtures using convective assembly and label-free detection with surface enhanced Raman scattering. Chemical Communications, 2011, 47, 3424.	4.1	20
35	Towards single-microorganism detection using surface-enhanced Raman spectroscopy. International Journal of Environmental Analytical Chemistry, 2007, 87, 763-770.	3.3	18
36	Functional artificial free-standing yeast biofilms. Colloids and Surfaces B: Biointerfaces, 2011, 88, 656-663.	5.0	17

Mehmet Kahraman

#	Article	IF	CITATIONS
37	Tunable Plasmonic Silver Nanodomes for Surface-Enhanced Raman Scattering. Plasmonics, 2018, 13, 785-795.	3.4	17
38	Preparation and Characterization of Conductive Polyaniline/Silver Nanocomposite Films and Their Antimicrobial Studies. Polymer Engineering and Science, 2019, 59, E182.	3.1	17
39	SERS-based sensor with a machine learning based effective feature extraction technique for fast detection of colistin-resistant Klebsiella pneumoniae. Analytica Chimica Acta, 2022, 1221, 340094.	5.4	16
40	Characterization of Femtosecond Laser-Induced Breakdown Spectroscopy (fsLIBS) and Applications for Biological Samples. Applied Spectroscopy, 2014, 68, 949-954.	2.2	15
41	Slurry sampling electrothermal atomic absorption spectrometric determination of chromium after separation/enrichment by mercaptoundecanoic acid modified gold coated TiO2 nanoparticles. Microchemical Journal, 2011, 99, 421-424.	4.5	13
42	TRAIL-conjugated silver nanoparticles sensitize glioblastoma cells to TRAIL by regulating CHK1 in the DNA repair pathway. Neurological Research, 2020, 42, 1061-1069.	1.3	10
43	Editorial: Plasmonic Technologies for Bioanalytical Applications. Frontiers in Chemistry, 2019, 7, 865.	3.6	4
44	Synthesis and characterization of novel phthalocyanines and evaluation of photodynamic therapy properties. Proceedings of SPIE, 2016, , .	0.8	1
45	Contamination of Low Frictional Elastomeric Ligatures by Streptococcus mutans: A Prospective RT-PCR and AFM Study. , 2021, 34, 163-169.		1
46	Toward PCR-free mutation detection based on surface-enhanced Raman scattering. Proceedings of SPIE, 2009, , .	0.8	0
47	Surface-Enhanced Raman Scattering of Proteins. , 2010, , .		Ο
48	Development of SERS substrates for immunoassay applications. , 2016, , .		0
49	Fabrication of tunable plasmonic 3D nanostructures for SERS applications. , 2016, , .		0
50	Development of an optical biosensor based on surface-enhanced Raman scattering for DNA analysis. , 2016, , .		0
51	Plasmonic nanostructures for bioanalytical applications of SERS. , 2016, , .		0