Dmitry Dg Shaysultanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4270023/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. Journal of Alloys and Compounds, 2014, 591, 11-21.	5.5	492
2	Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys. Journal of Alloys and Compounds, 2015, 628, 170-185.	5.5	312
3	Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Materials Letters, 2015, 142, 153-155.	2.6	296
4	Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 533, 107-118.	5.6	283
5	High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 188-195.	5.6	200
6	Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy. Journal of Alloys and Compounds, 2017, 693, 394-405.	5.5	171
7	Second phase formation in the CoCrFeNiMn high entropy alloy after recrystallization annealing. Materials Letters, 2016, 185, 1-4.	2.6	137
8	Effect of second phase particles on mechanical properties and grain growth in a CoCrFeMnNi high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 748, 228-235.	5.6	126
9	Novel Fe36Mn21Cr18Ni15Al10 high entropy alloy with bcc/B2 dual-phase structure. Journal of Alloys and Compounds, 2017, 705, 756-763.	5.5	114
10	Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x=0; 0.25; 0.5; 1) high-entropy alloys. Materials Characterization, 2016, 121, 125-134.	4.4	106
11	Effect of Al on structure and mechanical properties of Al _x NbTiVZr (<i>x</i> = 0, 0.5, 1, 1.5) high entropy alloys. Materials Science and Technology, 2015, 31, 1184-1193.	1.6	104
12	Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys. Journal of Alloys and Compounds, 2019, 811, 152000.	5.5	96
13	Phase Composition and Superplastic Behavior of a Wrought AlCoCrCuFeNi High-Entropy Alloy. Jom, 2013, 65, 1815-1828.	1.9	93
14	Tensile properties of the Cr–Fe–Ni–Mn non-equiatomic multicomponent alloys with different Cr contents. Materials and Design, 2015, 87, 60-65.	7.0	89
15	Laser beam welding of a CoCrFeNiMn-type high entropy alloy produced by self-propagating high-temperature synthesis. Intermetallics, 2018, 96, 63-71.	3.9	83
16	Effect of Al on structure and mechanical properties of Fe-Mn-Cr-Ni-Al non-equiatomic high entropy alloys with high Fe content. Journal of Alloys and Compounds, 2019, 770, 194-203.	5.5	80
17	Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling. Materials, 2018, 11, 53.	2.9	75
18	Fatigue behaviour of a laser beam welded CoCrFeNiMn-type high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138358.	5.6	59

#	Article	IF	CITATIONS
19	Structure and high temperature mechanical properties of novel non-equiatomic Fe-(Co,) Tj ETQq1 1 0.784314 rg	BT ₃ /9verlo	ck_10 Tf 50 🤇
20	Mechanical properties of a new high entropy alloy with a duplex ultra-fine grained structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 728, 54-62.	5.6	55
21	Recrystallized microstructures and mechanical properties of a C-containing CoCrFeNiMn-type high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 740-741, 201-210.	5.6	52
22	Superplasticity of AlCoCrCuFeNi High Entropy Alloy. Materials Science Forum, 0, 735, 146-151.	0.3	48
23	Evolution of Microstructure and Mechanical Properties of a CoCrFeMnNi High-Entropy Alloy during High-Pressure Torsion at Room and Cryogenic Temperatures. Metals, 2018, 8, 123.	2.3	35
24	Microstructure and Mechanical Properties Evolution in HfNbTaTiZr Refractory Highâ€Entropy Alloy During Cold Rolling. Advanced Engineering Materials, 2020, 22, 2000105.	3.5	26
25	Refractory high entropy alloy with ductile intermetallic B2 matrix / hard bcc particles and exceptional strain hardening capacity. Materialia, 2021, 20, 101225.	2.7	26
26	Gradient soft magnetic materials produced by additive manufacturing from non-magnetic powders. Journal of Materials Processing Technology, 2022, 300, 117393.	6.3	18
27	Outstanding cryogenic strength-ductility properties of a cold-rolled medium-entropy TRIP Fe65(CoNi)25Cr9A·5C0.5 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 836, 142720.	5.6	16
28	Performance-oriented multistage design for multi-principal element alloys with low cost yet high efficiency. Materials Horizons, 2022, 9, 1518-1525.	12.2	12
29	Mechanical Behavior and Microstructure Evolution during Superplastic Deformation of the Fine-Grained AlCoCrCuFeNi High Entropy Alloy. Materials Science Forum, 0, 838-839, 302-307.	0.3	11
30	Friction Stir Welding of a TRIP Fe49Mn30Cr10Co10C1 High Entropy Alloy. Metals, 2021, 11, 66.	2.3	10
31	Use of Novel Welding Technologies for High-Entropy Alloys Joining. Materials Science Forum, 0, 941, 919-924.	0.3	8
32	Microstructure Refinement in the CoCrFeNiMn High Entropy Alloy under Plastic Straining. Materials Science Forum, 0, 879, 1853-1858.	0.3	3
33	Strengthening of a CoCrFeNiMn-Type High Entropy Alloy by Regular Arrays of Nanoprecipitates. Materials Science Forum, 2018, 941, 772-777.	0.3	3