Lakshmi Kantam Mannepalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4269845/publications.pdf

Version: 2024-02-01

67 papers

2,120 citations

28 h-index 243625 44 g-index

70 all docs

70 docs citations

70 times ranked

2663 citing authors

#	Article	IF	CITATIONS
1	The first example of Michael addition catalysed by modified Mg–Al hydrotalcite. Journal of Molecular Catalysis A, 1999, 146, 279-284.	4.8	133
2	Friedel–Crafts acylation of aromatics and heteroaromatics by beta zeolite. Journal of Molecular Catalysis A, 2005, 225, 15-20.	4.8	132
3	Amination of Alcohols Catalyzed by Copperâ€Aluminium Hydrotalcite: A Green Synthesis of Amines. European Journal of Organic Chemistry, 2009, 2009, 5383-5389.	2.4	120
4	Tris(acetylacetonato)rhodium(III)â€Catalyzed αâ€Alkylation of Ketones, βâ€Alkylation of Secondary Alcohols and Alkylation of Amines with Primary Alcohols. Advanced Synthesis and Catalysis, 2013, 355, 1859-1867.	4.3	99
5	Iron pillared clays — efficient catalysts for Friedel–Crafts reactions. Applied Catalysis A: General, 1997, 149, 257-264.	4.3	75
6	Acylation of aromatic ethers with acid anhydrides in the presence of cation-exchanged clays. Applied Catalysis A: General, 1998, 171, 155-160.	4.3	73
7	Synthesis of highly substituted 2-perfluoroalkyl quinolines by electrophilic iodocyclization of perfluoroalkyl propargyl imines/amines. Organic and Biomolecular Chemistry, 2009, 7, 85-93.	2.8	72
8	High Efficiency Conversion of Glycerol to 1,3-Propanediol Using a Novel Platinum–Tungsten Catalyst Supported on SBA-15. Industrial & Engineering Chemistry Research, 2015, 54, 9104-9115.	3.7	72
9	Selective hydrogenation of levulinic acid into \hat{I}^3 -valerolactone over Cu/Ni hydrotalcite-derived catalyst. Catalysis Today, 2018, 309, 189-194.	4.4	63
10	N4â€Tetradentate Dicarboxyamidate/Dipyridyl Palladium Complexes as Robust Catalysts for the Heck Reaction of Deactivated Aryl Chlorides. Chemistry - A European Journal, 2009, 15, 1578-1581.	3.3	59
11	Catalytic conversion of furfuryl alcohol or levulinic acid into alkyl levulinates using a sulfonic acid-functionalized hafnium-based MOF. Catalysis Communications, 2019, 124, 62-66.	3.3	59
12	Solvent-free microwave-assisted synthesis of solketal from glycerol using transition metal ions promoted mordenite solid acid catalysts. Molecular Catalysis, 2017, 434, 184-193.	2.0	56
13	An Improved Process for Selective Liquid-Phase Air Oxidation of Toluene. Catalysis Letters, 2002, 81, 223-232.	2.6	51
14	Epoxidations of olefins catalysed by new Mn(II) salen immobilized mesoporous materials. Journal of Molecular Catalysis A, 2000, 159, 417-421.	4.8	50
15	Solid Base Catalysts in Organic Synthesis. Current Organic Chemistry, 2006, 10, 1627-1637.	1.6	50
16	Hydroesterification of styrene catalyzed by montmorillonite-diphenylphosphinepalladium(II) chloride in the presence of chiral phosphines. Journal of Molecular Catalysis A, 1997, 118, 247-253.	4.8	48
17	An expedient microwave assisted regio- and stereoselective synthesis of spiroquinoxaline pyrrolizine derivatives and their AChE inhibitory activity. New Journal of Chemistry, 2017, 41, 873-878.	2.8	46
18	Direct synthesis of two-dimensional mesoporous copper silicate as an efficient catalyst for synthesis of propargylamines. Catalysis Today, 2013, 208, 66-71.	4.4	41

#	Article	IF	CITATIONS
19	Chemoselective Hydrogenation of the Olefinic Bonds Using a Palladium/Magnesiumâ€Lanthanum Mixed Oxide Catalyst. Advanced Synthesis and Catalysis, 2012, 354, 663-669.	4.3	37
20	Metal–acid bifunctional catalysts for selective hydrogenolysis of glycerol under atmospheric pressure: A highly selective route to produce propanols. Applied Catalysis A: General, 2015, 498, 88-98.	4.3	37
21	Selective reduction of aldehydes to alcohols by calcined Ni-Al hydrotalcite. Journal of Molecular Catalysis A, 2003, 206, 145-151.	4.8	35
22	Catalytic performance of Pt/AlPO ₄ catalysts for selective hydrogenolysis of glycerol to 1,3-propanediol in the vapour phase. RSC Advances, 2014, 4, 51893-51903.	3.6	34
23	Nano palladium supported on highâ€surfaceâ€area metal–organic framework MILâ€101: an efficient catalyst for Sonogashira coupling of aryl and heteroaryl bromides with alkynes. Applied Organometallic Chemistry, 2015, 29, 234-239.	3.5	34
24	Synthesis of 2-nitroalkanols by Mgî—'Alî—'O-t-Bu hydrotalcite. Journal of Molecular Catalysis A, 2001, 169, 193-197.	4.8	33
25	Highly Efficient "Tight Fit" Immobilization of α-Chymotrypsin in Mesoporous MCM-41: A Novel Approach Using Precursor Immobilization and Activation. Biotechnology Progress, 2003, 19, 346-351.	2.6	32
26	Synthesis of unsymmetrical phenylurea derivatives via oxidative cross coupling of aryl formamides with amines under metal-free conditions. New Journal of Chemistry, 2015, 39, 805-809.	2.8	32
27	Vapour-Phase Hydrogenolysis of Glycerol to 1,3-Propanediol Over Supported Pt Catalysts: The Effect of Supports on the Catalytic Functionalities. Catalysis Letters, 2014, 144, 2129-2143.	2.6	31
28	Cerium-containing MCM-41 catalyst for selective oxidative arene cross-dehydrogenative coupling reactions. Catalysis Today, 2012, 198, 35-44.	4.4	30
29	Uridate/pyridyl Pd(II) complexes: Phosphine-free high turnover catalysts for the Heck reaction of deactivated aryl bromides. Journal of Organometallic Chemistry, 2011, 696, 795-801.	1.8	29
30	Phosphineâ€Free Palladium atalyzed Decarboxylative Coupling of Alkynylcarboxylic Acids with Aryl and Heteroaryl Halides. Advanced Synthesis and Catalysis, 2013, 355, 705-710.	4.3	26
31	Monodispersed and Stable Nano Copper(0) from Copper―Aluminium Hydrotalcite: Importance in CïŁ¿C Couplings of Deactivated Aryl Chlorides. Advanced Synthesis and Catalysis, 2013, 355, 751-756.	4.3	25
32	Ce/SiO2 composite as an efficient catalyst for the multicomponent one-pot synthesis of substituted pyrazolones in aqueous media and their antimicrobial activities. Journal of Molecular Catalysis A, 2016, 411, 325-336.	4.8	25
33	Copper-catalyzed oxidative methyl-esterification of 5-hydroxymethylfurfural using TBHP as an oxidizing and methylating reagent: A new approach for the synthesis of furan-2,5-dimethylcarboxylate. Journal of Catalysis, 2020, 389, 259-269.	6.2	25
34	New cyclopalladated benzothiophenes: a catalyst precursor for the Suzuki coupling of deactivated aryl chlorides. Organic and Biomolecular Chemistry, 2010, 8, 3001.	2.8	23
35	Mn(III) salen complex: an efficient reusable acylation catalyst. Journal of Molecular Catalysis A, 2001, 168, 69-73.	4.8	22
36	Formation of benzoxanthenones and benzochromenones via cerium-impregnated-MCM-41 catalyzed, solvent-free, three-component reaction and their biological evaluation as anti-microbial agents. Journal of Molecular Catalysis A, 2014, 386, 49-60.	4.8	22

#	Article	IF	CITATIONS
37	Nanocrystalline magnesium oxide-stabilized palladium(0): an efficient and reusable catalyst for synthesis of N-(2-pyridyl)indoles. New Journal of Chemistry, 2015, 39, 3399-3404.	2.8	19
38	Advances in C-C Coupling Reactions Catalyzed by Homogeneous Phosphine Free Palladium Catalysts. Bulletin of the Chemical Society of Japan, 2020, 93, 355-372.	3.2	19
39	Crude bio-glycerol as a hydrogen source for the selective hydrogenation of aromatic nitro compounds over Ru/MgLaO catalyst. Catalysis Communications, 2016, 74, 91-94.	3.3	18
40	Oxidative amidation of benzaldehydes and benzylamines with <i>N</i> -substituted formamides over a Co/Al hydrotalcite-derived catalyst. New Journal of Chemistry, 2017, 41, 15268-15276.	2.8	18
41	Dehydrogenative and decarboxylative C–H alkynylation of heteroarenes catalyzed by Pd(II)–carbene complex. Tetrahedron, 2015, 71, 1975-1981.	1.9	17
42	Heterogeneous catalytic asymmetric aminohydroxylation of olefins using LDH-supported OsO4. Journal of Molecular Catalysis A, 2003, 196, 151-156.	4.8	16
43	Oxidative coupling of carboxylic acids or benzaldehydes with DMF using hydrotalicite-derived oxide catalysts. Applied Catalysis B: Environmental, 2019, 240, 348-357.	20.2	16
44	Synthesis of substituted guanidines using Zn–Al hydrotalcite catalyst. Journal of Chemical Sciences, 2013, 125, 1339-1345.	1.5	13
45	Ordered Hexagonal Mesoporous Aluminosilicates and their Application in Ligandâ€Free Synthesis of Secondary Amines. ChemCatChem, 2015, 7, 747-751.	3.7	12
46	Nano-metal oxides for organic transformations. Current Opinion in Green and Sustainable Chemistry, 2019, 15, 20-26.	5.9	12
47	Hydrogenation of Furfural to Furfuryl Alcohol over Nickel Supported Bentonite Catalyst. ChemistrySelect, 2021, 6, 6601-6606.	1.5	12
48	Synthesis of quinoxaline derivatives from terminal alkynes and o-phenylenediamines by using copper alumina catalyst. Journal of Chemical Sciences, 2017, 129, 1761-1769.	1.5	11
49	Bis(\hat{l}^{1} 4-iodo)bis[(\hat{a}°)-sparteine]dicopper: A Versatile Catalyst for Direct <i>O</i> -Arylation and <i>O</i> -Alkylation of Phenols and Aliphatic Alcohols with Haloarenes. Bulletin of the Chemical Society of Japan, 2011, 84, 788-790.	3.2	9
50	Ultrafine Copper Oxide Particles Dispersed on Nitrogenâ€Doped Hollow Carbon Nanospheres for Oxidative Esterification of Biomassâ€Derived 5â€Hydroxymethylfurfural. ChemPlusChem, 2021, 86, 259-269.	2.8	9
51	Nanocrystalline magnesium oxide-stabilized palladium(0): the Heck reaction of heteroaryl bromides in the absence of additional ligands and base. Catalysis Science and Technology, 2013, 3, 2550.	4.1	8
52	Heck cross-coupling of vinyl heteroaromatic compounds with aryl and heteroaryl halides using Pd(II) complex under phosphine-free conditions. Tetrahedron, 2013, 69, 10940-10945.	1.9	8
53	Synthesis of fluorenones by using Pd(<scp>ii</scp>)/Mg–La mixed oxide catalyst. Catalysis Science and Technology, 2015, 5, 3363-3367.	4.1	8
54	Direct Synthesis of Amides from Oxidative Coupling of Benzyl Alcohols or Benzylamines with ⟨i⟩N⟨ i⟩â€Substituted Formamides Using a Cuâ€Feâ€Based Heterogeneous Catalyst. ChemistrySelect, 2018, 3, 8436-8443.	1.5	8

#	Article	IF	Citations
55	Enantioselective Michael addition reactions catalyzed by a new heterobimetallic asymmetric complex1IICT Communication No.: 4052.1. Journal of Molecular Catalysis A, 1999, 142, 389-392.	4.8	7
56	Asymmetric Hydrogenation of Ethyl Pyruvate using Layered Double Hydroxides–Supported Nano Noble Metal Catalysts. Synthetic Communications, 2007, 37, 959-964.	2.1	7
57	Rhodium catalyzed three-component reaction of aldehyde, boronic acid, and sulfonamides: a facile one-pot synthesis of diarylmethylamines. Tetrahedron Letters, 2014, 55, 5439-5442.	1.4	7
58	Kinetics of Henry reaction catalyzed by fluorapatite. Chemical Engineering Research and Design, 2022, 181, 101-109.	5 . 6	5
59	Carboxyamido/carbene ligated palladium (II) complex: A versatile catalyst for the synthesis of aryl-substituted heteroarenes. Polyhedron, 2016, 120, 150-153.	2.2	4
60	Advances in Catalysis for Sustainable Development Special Issue. ACS Sustainable Chemistry and Engineering, 2017, 5, 3597-3597.	6.7	4
61	Copper supported Mg Al hydrotalcite derived oxide catalyst for enol carbamates synthesis via C H bond activation of formamides. Catalysis Communications, 2020, 147, 106150.	3.3	4
62	W/HAP catalysed N-oxidation of tertiary amines with H2O2 as an oxidant. Journal of Chemical Sciences, 2022, 134, 50.	1.5	4
63	Ordered mesoporous ferrosilicate materials with highly dispersed iron oxide nanoparticles and investigation of their unique magnetic properties. Physical Chemistry Chemical Physics, 2014, 16, 22471-22475.	2.8	3
64	Transition Metal Exchanged Hydroxyapatite/Fluorapatite Catalysts for Câ ⁻ C and Câ ⁻ N Bond Forming Reactions. Chemical Record, 2021, 21, 1398-1416.	5.8	3
65	Finely dispersed CuO on nitrogen-doped carbon hollow nanospheres for selective oxidation of sp3 C–H bonds. New Journal of Chemistry, 2021, 45, 16179-16186.	2.8	2
66	Synthesis of <i>β</i> êHydroxy <i>α</i> êSulfanyl Esters by Using Nanocrystalline Magnesium Oxide. Helvetica Chimica Acta, 2011, 94, 1533-1542.	1.6	1
67	Catalysis Today Special Issue: Catalysis for Sustainable Development, Peace and Prosperity. Catalysis Today, 2018, 309, 1.	4.4	1