
Catherine M Naud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4269721/publications.pdf Version: 2024-02-01

CATHERINE M NAUD

#	Article	IF	CITATIONS
1	SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Annales Geophysicae, 2005, 23, 253-275.	0.6	240
2	Evaluation of ERA-Interim and MERRA Cloudiness in the Southern Ocean. Journal of Climate, 2014, 27, 2109-2124.	1.2	116
3	The Atmospheric Infrared Sounder version 6 cloud products. Atmospheric Chemistry and Physics, 2014, 14, 399-426.	1.9	99
4	Cloud Vertical Distribution across Warm and Cold Fronts in CloudSat–CALIPSO Data and a General Circulation Model. Journal of Climate, 2010, 23, 3397-3415.	1.2	72
5	Comparison of cloud top heights derived from MISR stereo and MODIS CO2-slicing. Geophysical Research Letters, 2002, 29, 42-1-42-4.	1.5	49
6	Observational Analysis of Cloud and Precipitation in Midlatitude Cyclones: Northern versus Southern Hemisphere Warm Fronts. Journal of Climate, 2012, 25, 5135-5151.	1.2	48
7	Impact of Dynamics and Atmospheric State on Cloud Vertical Overlap. Journal of Climate, 2008, 21, 1758-1770.	1.2	47
8	Sensitivity of Warm-Frontal Processes to Cloud-Nucleating Aerosol Concentrations. Journals of the Atmospheric Sciences, 2013, 70, 1768-1783.	0.6	47
9	Comparison between active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains site. Journal of Geophysical Research, 2003, 108, .	3.3	46
10	Stereo cloudâ€ŧop heights and cloud fraction retrieval from ATSRâ€2. International Journal of Remote Sensing, 2007, 28, 1921-1938.	1.3	46
11	Assessment of MISR and MODIS cloud top heights through inter-comparison with a back-scattering lidar at SIRTA. Geophysical Research Letters, 2004, 31, .	1.5	45
12	The Relationship between Boundary Layer Stability and Cloud Cover in the Post-Cold-Frontal Region. Journal of Climate, 2016, 29, 8129-8149.	1.2	45
13	Intercomparison of multiple years of MODIS, MISR and radar cloud-top heights. Annales Geophysicae, 2005, 23, 2415-2424.	0.6	42
14	Observational Constraints on the Cloud Thermodynamic Phase in Midlatitude Storms. Journal of Climate, 2006, 19, 5273-5288.	1.2	41
15	A CloudSat–CALIPSO View of Cloud and Precipitation Properties across Cold Fronts over the Global Oceans. Journal of Climate, 2015, 28, 6743-6762.	1.2	36
16	Process-Oriented Evaluation of Climate and Weather Forecasting Models. Bulletin of the American Meteorological Society, 2019, 100, 1665-1686.	1.7	36
17	Evaluation of Extratropical Cyclone Precipitation in the North Atlantic Basin: An Analysis of ERA-Interim, WRF, and Two CMIP5 Models. Journal of Climate, 2018, 31, 2345-2360.	1.2	30
18	Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap. Remote Sensing of Environment, 2007, 107, 200-210.	4.6	25

CATHERINE M NAUD

#	Article	IF	CITATIONS
19	Using satellites to investigate the sensitivity of longwave downward radiation to water vapor at high elevations. Journal of Geophysical Research, 2012, 117, .	3.3	22
20	Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting. Journal of Climate, 2013, 26, 5827-5845.	1.2	22
21	Assessment of ISCCP cloudiness over the Tibetan Plateau using CloudSatâ€CALIPSO. Journal of Geophysical Research, 2010, 115, .	3.3	21
22	Extratropical Cyclone Precipitation Life Cycles: A Satelliteâ€Based Analysis. Geophysical Research Letters, 2018, 45, 8647-8654.	1.5	21
23	Sensitivity of downward longwave surface radiation to moisture and cloud changes in a highâ€elevation region. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,072.	1.2	20
24	A Satellite View of the Radiative Impact of Clouds on Surface Downward Fluxes in the Tibetan Plateau. Journal of Applied Meteorology and Climatology, 2015, 54, 479-493.	0.6	17
25	Thermodynamic phase profiles of optically thin midlatitude clouds and their relation to temperature. Journal of Geophysical Research, 2010, 115, .	3.3	16
26	Post Cold Frontal Clouds at the ARM Eastern North Atlantic Site: An Examination of the Relationship Between Largeâ€Scale Environment and Low‣evel Cloud Properties. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,117.	1.2	16
27	Multiple satellite observations of cloud cover in extratropical cyclones. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9982-9996.	1.2	15
28	Observational Constraint for Precipitation in Extratropical Cyclones: Sensitivity to Data Sources. Journal of Applied Meteorology and Climatology, 2018, 57, 991-1009.	0.6	14
29	On the use of ICESAT-GLAS measurements for MODIS and SEVIRI cloud-top height accuracy assessment. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	13
30	The Interaction Between Boundary Layer and Convection Schemes in a WRF Simulation of Post Cold Frontal Clouds Over the ARM East North Atlantic Site. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4699-4721.	1.2	13
31	Thermodynamic Phase and Ice Cloud Properties in Northern Hemisphere Winter Extratropical Cyclones Observed by Aqua AIRS. Journal of Applied Meteorology and Climatology, 2015, 54, 2283-2303.	0.6	12
32	Assessing CYGNSS's Potential to Observe Extratropical Fronts and Cyclones. Journal of Applied Meteorology and Climatology, 2017, 56, 2027-2034.	0.6	12
33	Relationships Between Precipitation Properties and Largeâ€Scale Conditions During Subsidence at the Eastern North Atlantic Observatory. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031848.	1.2	12
34	Comparison between ATSRâ€2 stereo, MOS O2â€A band and groundâ€based cloud top heights. International Journal of Remote Sensing, 2007, 28, 1969-1987.	1.3	10
35	Comparison of the sensitivity of surface downward longwave radiation to changes in water vapor at two high elevation sites. Environmental Research Letters, 2014, 9, 114015.	2.2	10
36	Evaluation of Modeled Precipitation in Oceanic Extratropical Cyclones Using IMERG. Journal of Climate, 2020, 33, 95-113.	1.2	10

CATHERINE M NAUD

1

#	Article	IF	CITATIONS
37	Extratropical Cyclone Clouds in the GFDL Climate Model: Diagnosing Biases and the Associated Causes. Journal of Climate, 2019, 32, 6685-6701.	1.2	9
38	On the Relationship Between the Marine Cold Air Outbreak M Parameter and Lowâ€Level Cloud Heights in the Midlatitudes. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032465.	1.2	9
39	Observed Covariations of Aerosol Optical Depth and Cloud Cover in Extratropical Cyclones. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,338.	1.2	8
40	Assessment of multispectral ATSR2 stereo cloud-top height retrievals. Remote Sensing of Environment, 2006, 104, 337-345.	4.6	7
41	Aerosol optical depth distribution in extratropical cyclones over the Northern Hemisphere oceans. Geophysical Research Letters, 2016, 43, 10,504-10,511.	1.5	7
42	WRF Hindcasts of Cold Front Passages over the ARM Eastern North Atlantic Site: A Sensitivity Study. Monthly Weather Review, 2018, 146, 2417-2432.	0.5	7
43	Upright Convection in Extratropical Cyclones: A Survey Using Groundâ€Based Radar Data Over the United States. Geophysical Research Letters, 2020, 47, e2019GL086620.	1.5	7
44	Assessment of the Performance of the Chilbolton 3-GHz Advanced Meteorological Radar for Cloud-Top-Height Retrieval. Journal of Applied Meteorology and Climatology, 2005, 44, 876-887.	1.7	6
45	CYGNSS Observations and Analysis of Low-Latitude Extratropical Cyclones. Journal of Applied Meteorology and Climatology, 2021, 60, 527-541.	0.6	6
46	Experimental observations of cavitation in superfluid helium-4. Physica B: Condensed Matter, 1994, 194-196, 575-576.	1.3	5
47	Intercomparison of Ground-Based Radar and Satellite Cloud-Top Height Retrievals for Overcast Single-Layered Cloud Fields. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 1901-1908.	2.7	5
48	Coupling of Precipitation and Cloud Structures in Oceanic Extratropical Cyclones to Large-Scale Moisture Flux Convergence. Journal of Climate, 2018, 31, 9565-9584.	1.2	5
49	Radiative Transfer in Multifractal Atmospheres: Fractional Integration, Multifractal Phase Transitions and Inversion Problems. The IMA Volumes in Mathematics and Its Applications, 1997, , 239-267.	0.5	3
50	Reply to "Comments on â€~A <i>CloudSat–CALIPSO</i> View of Cloud and Precipitation Properties across Cold Fronts over the Global Oceans'― Journal of Climate, 2018, 31, 2969-2975.	1.2	2
51	On the relationship between CYGNSS surface heat fluxes and the lifecycle of low-latitude ocean extratropical cyclones. Journal of Applied Meteorology and Climatology, 2021, , .	0.6	2
52	Effect of cirrus clouds in the infrared (4 to 100 μm): high-spectral-resolution simulations. , 1998, , .		1
53	High-spectral-resolution simulation of the impact on heating rates of cirrus clouds in the far infrared. , 1998, 3495, 92.		1

54 <title>Remote sensing of cirrus cloud properties in the far infrared</title>., 2001, ,.

4

#	Article	IF	CITATIONS
55	<title>Scientific background for CLOUDS: a cloud and radiation monitoring satellite</title> . , 2001, , .		Ο
56	Clouds-a cloud, arerosol, radiation and precipitation explorer. Acta Astronautica, 2003, 52, 739-746.	1.7	0
57	Impacts of cloud condensation nuclei on deep stratus clouds. , 2013, , .		0