
Mary Morgan-Richards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4269640/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights into Aotearoa New Zealand's biogeographic history provided by the study of natural hybrid zones. Journal of the Royal Society of New Zealand, 2024, 54, 55-74.	1.9	4
2	Recommendations for non-lethal monitoring of tree wētĕ(<i>Hemideina</i> spp <i>.</i>) using artificial galleries. New Zealand Journal of Zoology, 2023, 50, 381-393.	1.1	1
3	Lack of assortative mating might explain reduced phenotypic differentiation where two grasshopper species meet. Journal of Evolutionary Biology, 2022, 35, 509-519.	1.7	6
4	Unrestricted gene flow between two subspecies of translocated brushtail possums (Trichosurus) Tj ETQq0 0 0	rgBT_/Overl 2.4	ock 10 Tf 50
5	Chemical Ecology and Olfaction in Short-Horned Grasshoppers (Orthoptera: Acrididae). Journal of Chemical Ecology, 2022, 48, 121-140.	1.8	13
6	Climate change and alpine-adapted insects: modelling environmental envelopes of a grasshopper radiation. Royal Society Open Science, 2022, 9, 211596.	2.4	16
7	Relationships among body size components of three flightless New Zealand grasshopper species (Orthoptera, Acrididae) and their ecological applications. Journal of Orthoptera Research, 2022, 31, 91-103.	1.0	2
8	Spatial Variation of Acanthophlebia cruentata (Ephemeroptera), a Mayfly Endemic to Te Ika-a-MÄui—North Island of Aotearoa, New Zealand. Insects, 2022, 13, 567.	2.2	0
9	Ecology and systematics of the wine wētĕand allied species, with description of four new Hemiandrus species. New Zealand Journal of Zoology, 2021, 48, 47-80.	1.1	4
10	Climate and ice in the last glacial maximum explain patterns of isolation by distance inferred for alpine grasshoppers. Insect Conservation and Diversity, 2021, 14, 568-581.	3.0	7
11	Generation of large mitochondrial and nuclear nucleotide sequences and phylogenetic analyses using high-throughput short-read datasets for endangered Placostylinae snails of the southwest Pacific. Molluscan Research, 2021, 41, 243-253.	0.7	2
12	Patterns of regional endemism among New Zealand invertebrates. New Zealand Journal of Zoology, 2020, 47, 1-19.	1.1	7
13	Phylogenetic topology and timing of New Zealand olive shells are consistent with punctuated equilibrium. Journal of Zoological Systematics and Evolutionary Research, 2020, 58, 209-220.	1.4	2
14	Indigenous plant naming and experimentation reveal a plant–insect relationship in New Zealand forests. Conservation Science and Practice, 2020, 2, e282.	2.0	4
15	Lineage Identification Affects Estimates of Evolutionary Mode in Marine Snails. Systematic Biology, 2020, 69, 1106-1121.	5.6	2
16	An alpine grasshopper radiation older than the mountains, on KĕTiritiri o te Moana (Southern Alps) of Aotearoa (New Zealand). Molecular Phylogenetics and Evolution, 2020, 147, 106783.	2.7	20
17	Geometric morphometrics and machine learning challenge currently accepted species limits of the land snail Placostylus (Pulmonata: Bothriembryontidae) on the Isle of Pines, New Caledonia. Journal of Molluscan Studies, 2020, 86, 35-41.	1.2	12
18	Loss and gain of sexual reproduction in the same stick insect. Molecular Ecology, 2019, 28, 3929-3941.	3.9	16

#	Article	IF	CITATIONS
19	Parthenogenetic Females of the Stick Insect Clitarchus hookeri Maintain Sexual Traits. Insects, 2019, 10, 202.	2.2	9
20	Spatial genetics of a high elevation lineage of Rhytididae land snails in New Zealand: the Powelliphanta Kawatiri complex. Molluscan Research, 2019, 39, 280-289.	0.7	3
21	Tuatara and a new morphometric dataset for Rhynchocephalia: Comments on Herreraâ€Flores <i>etÂal</i> Palaeontology, 2019, 62, 321-334.	2.2	6
22	Diversity and distribution of Pleioplectron Hutton cave wētĕ(Orthoptera: Rhaphidophoridae:) Tj ETQq0 0 0 rgBT European Journal of Taxonomy, 2019, , .	Overlock 0.6	10 Tf 50 62 3
23	Anthropogenic cause of range shifts and gene flow between two grasshopper species revealed by environmental modelling, geometric morphometrics and population genetics. Insect Conservation and Diversity, 2018, 11, 415-434.	3.0	16
24	Genome statistics and phylogenetic reconstructions for Southern Hemisphere whelks (Gastropoda:) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf !
25	The ectoparasites of hybrid ducks in New Zealand (Mallard x Grey Duck). International Journal for Parasitology: Parasites and Wildlife, 2018, 7, 335-342.	1.5	2
26	First detection of Wolbachia in the New Zealand biota. PLoS ONE, 2018, 13, e0195517.	2.5	6
27	Genetic structure and shell shape variation within a rocky shore whelk suggest both diverging and constraining selection with gene flow. Biological Journal of the Linnean Society, 2018, , .	1.6	2
28	Evolutionary lineages of marine snails identified using molecular phylogenetics and geometric morphometric analysis of shells. Molecular Phylogenetics and Evolution, 2018, 127, 626-637.	2.7	16
29	Reinstatement of the New Zealand cave wētĕgenus Miotopus Hutton (Orthoptera: Rhaphidophoridae) and description of a new species. European Journal of Taxonomy, 2018, , .	0.6	3
30	Geometric morphometric analysis reveals that the shells of male and female siphon whelks <i>Penion chathamensis</i> are the same size and shape. Molluscan Research, 2017, 37, 194-201.	0.7	15
31	Male tree weta are attracted to cuticular scent cues but do not discriminate according to sex or among two closely related species. Ethology, 2017, 123, 825-834.	1.1	4
32	Closing the gap: Avian lineage splits at a young, narrow seaway imply a protracted history of mixed population response. Molecular Ecology, 2017, 26, 5752-5772.	3.9	12
33	A phylogeny of Southern Hemisphere whelks (Gastropoda: Buccinulidae) and concordance with the fossil record. Molecular Phylogenetics and Evolution, 2017, 114, 367-381.	2.7	26
34	Explaining large mitochondrial sequence differences within a population sample. Royal Society Open Science, 2017, 4, 170730.	2.4	33
35	Genetic distinctiveness of the Waikawa Island mouse population indicates low rate of dispersal from mainland New Zealand. , 2017, 41, .		1
36	Lineages, splits and divergence challenge whether the terms anagenesis and cladogenesis are necessary. Biological Journal of the Linnean Society, 2016, 117, 165-176.	1.6	24

#	Article	IF	CITATIONS
37	Little or no gene flow despite F ₁ hybrids at two interspecific contact zones. Ecology and Evolution, 2016, 6, 2390-2404.	1.9	9
38	Identification of a Rare Gecko from North Island New Zealand, and Genetic Assessment of Its Probable Origin: A Novel Mainland Conservation Priority?. Journal of Herpetology, 2016, 50, 77.	0.5	11
39	Speciation through the looking-glass. Biological Journal of the Linnean Society, 2016, , .	1.6	1
40	Three new ground wētĕspecies and a redescription ofHemiandrus maculifrons. New Zealand Journal of Zoology, 2016, 43, 363-383.	1.1	5
41	Genetic diversity and gene flow in a rare New Zealand skink despite fragmented habitat in a volcanic landscape. Biological Journal of the Linnean Society, 2016, 119, 37-51.	1.6	7
42	Phylogenetics and Conservation in New Zealand: The Long and the Short of It. Topics in Biodiversity and Conservation, 2016, , 81-97.	1.0	5
43	Sticky Genomes: Using NGS Evidence to Test Hybrid Speciation Hypotheses. PLoS ONE, 2016, 11, e0154911.	2.5	8
44	Correlation between shell phenotype and local environment suggests a role for natural selection in the evolution of <i>Placostylus</i> snails. Molecular Ecology, 2015, 24, 4205-4221.	3.9	36
45	Improved resolution of cave weta diversity (Orthoptera: Rhaphidophoridae): ecological implications for Te Paki, Far North, New Zealand. New Zealand Journal of Zoology, 2015, 42, 1-16.	1.1	5
46	Intercontinental island hopping: Colonization and speciation of the grasshopper genus Phaulacridium (Orthoptera: Acrididae) in Australasia. Zoologischer Anzeiger, 2015, 255, 71-79.	0.9	7
47	Comparative cytogenetics of North Island tree wētĕin sympatry. New Zealand Journal of Zoology, 2015, 42, 73-84.	1.1	3
48	Elevational variation in adult body size and growth rate but not in metabolic rate in the tree weta Hemideina crassidens. Journal of Insect Physiology, 2015, 75, 30-38.	2.0	13
49	Morphological differentiation despite gene flow in an endangered grasshopper. BMC Evolutionary Biology, 2014, 14, 216.	3.2	16
50	Shifting ranges of two tree weta species (<i><scp>H</scp>emideina</i> spp.): competitive exclusion and changing climate. Journal of Biogeography, 2014, 41, 524-535.	3.0	42
51	Convergent local adaptation in size and growth rate but not metabolic rate in a pair of parapatric Orthoptera species. Biological Journal of the Linnean Society, 2014, 113, 123-135.	1.6	14
52	Molecular evolution and the latitudinal biodiversity gradient. Heredity, 2013, 110, 501-510.	2.6	89
53	Multiple lines of evidence suggest mosaic polyploidy in the hybrid parthenogenetic stick insect lineage <i>Acanthoxyla</i> . Insect Conservation and Diversity, 2013, 6, 537-548.	3.0	12
54	New Zealand ground wētĕ(Anostostomatidae: <i>Hemiandrus</i>): descriptions of two species with notes on their biology. New Zealand Journal of Zoology, 2013, 40, 314-329.	1.1	12

#	Article	IF	CITATIONS
55	Tolerance for Nutrient Imbalance in an Intermittently Feeding Herbivorous Cricket, the Wellington Tree Weta. PLoS ONE, 2013, 8, e84641.	2.5	13
56	Little and large: body size and genetic clines in a New Zealand gecko (<i>Woodworthia maculata</i>) along a coastal transect. Ecology and Evolution, 2012, 2, 273-285.	1.9	5
57	Shape and sound reveal genetic cohesion not speciation in the New Zealand orthopteran, Hemiandrus pallitarsis, despite high mitochondrial DNA divergence. Biological Journal of the Linnean Society, 2012, 105, 169-186.	1.6	17
58	DNA and Morphology Unite Two Species and 10 Million Year Old Fossils. PLoS ONE, 2012, 7, e52083.	2.5	10
59	The Invertebrate Life of New Zealand: A Phylogeographic Approach. Insects, 2011, 2, 297-325.	2.2	41
60	Does predation result in adult sex ratio skew in a sexually dimorphic insect genus?. Journal of Evolutionary Biology, 2011, 24, 2321-2328.	1.7	18
61	Mutualism or opportunism? Tree fuchsia (<i>Fuchsia excorticata</i>) and tree weta (<i>Hemideina</i>) interactions. Austral Ecology, 2011, 36, 261-268.	1.5	11
62	Phylogenetic information of genes, illustrated with mitochondrial data from a genus of gastropod molluscs. Biological Journal of the Linnean Society, 2011, 104, 770-785.	1.6	4
63	Geographic parthenogenesis and the common tea-tree stick insect of New Zealand. Molecular Ecology, 2010, 19, 1227-1238.	3.9	48
64	Status of the New Zealand cave weta (Rhaphidophoridae) genera Pachyrhamma, Gymnoplectron and Turbottoplectron. Invertebrate Systematics, 2010, 24, 131.	1.3	10
65	Toward Resolving Deep Neoaves Phylogeny: Data, Signal Enhancement, and Priors. Molecular Biology and Evolution, 2009, 26, 313-326.	8.9	87
66	A review of genetic analyses of hybridisation in New Zealand. Journal of the Royal Society of New Zealand, 2009, 39, 15-34.	1.9	47
67	Are you my mother? Phylogenetic analysis reveals orphan hybrid stick insect genus is part of a monophyletic New Zealand clade. Molecular Phylogenetics and Evolution, 2008, 48, 799-808.	2.7	30
68	Bird evolution: testing the metaves clade with six new mitochondrial genomes. BMC Evolutionary Biology, 2008, 8, 20.	3.2	70
69	Diversification of New Zealand weta (Orthoptera: Ensifera: Anostostomatidae) and their relationships in Australasia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3427-3437.	4.0	47
70	Fewer species of Argosarchus and Clitarchus stick insects (Phasmida, Phasmatinae): evidence from nuclear and mitochondrial DNA sequence data. Zoologica Scripta, 2005, 34, 483-491.	1.7	18
71	Hybrid origin of a parthenogenetic genus?. Molecular Ecology, 2005, 14, 2133-2142.	3.9	37
72	After the deluge: mitochondrial DNA indicates Miocene radiation and Pliocene adaptation of tree and giant weta (Orthoptera: Anostostomatidae). Journal of Biogeography, 2005, 32, 295-309.	3.0	71

#	Article	IF	CITATIONS
73	Chromosome rearrangements are not accompanied by expected genome size change in the tree weta Hemideina thoracica (Orthoptera, Anostostomatidae). Journal of Orthoptera Research, 2005, 14, 143-148.	1.0	2
74	Chloroplast DNA diversity of <i>Hieracium Pilosella</i> (Asteraceae) introduced to New Zealand: reticulation, hybridization, and invasion. American Journal of Botany, 2004, 91, 73-85.	1.7	35
75	Phylogenetics of New Zealand's tree, giant and tusked weta (Orthoptera: Anostostomatidae): evidence from mitochondrial DNA. Journal of Orthoptera Research, 2004, 13, 185-196.	1.0	23
76	Interspecific hybridization among Hieracium species in New Zealand: evidence from flow cytometry. Heredity, 2004, 93, 34-42.	2.6	50
77	Colour, Allozyme and Karyotype Variation Show Little Concordance in the New Zealand Giant Scree Weta Deinacrida Connectens (Orthoptera: Stenopelmatidae). Hereditas, 2004, 125, 265-276.	1.4	8
78	Robertsonian Translocations and B Chromosomes in the Wellington Tree Weta, Hemideina Crassidens (Orthoptera: Anostostomatidae). Hereditas, 2004, 132, 49-54.	1.4	18
79	A COMPARISON OF FIVE HYBRID ZONES OF THE WETA HEMIDEINA THORACICA (ORTHOPTERA:) Tj ETQq1 1 0.78 Evolution; International Journal of Organic Evolution, 2003, 57, 849-861.	4314 rgBT 2.3	- Overlock 49
80	A COMPARISON OF FIVE HYBRID ZONES OF THE WETA HEMIDEINA THORACICA (ORTHOPTERA:) Tj ETQq0 0 0 rgE Evolution; International Journal of Organic Evolution, 2003, 57, 849.	3T /Overloo 2.3	ck 10 Tf 50 1
81	Fission or fusion? Mitochondrial DNA phylogenetics of the chromosome races of <i>Hemideina crassidens</i> (Orthoptera: Anostostomatidae). Cytogenetic and Genome Research, 2002, 96, 217-222.	1.1	5
82	Phylogenetic and biosystematic relationships in four highly disjunct polyploid complexes in the subgenera and in (Aspleniaceae). Organisms Diversity and Evolution, 2002, 2, 299-311.	1.6	40
83	Polyploidy, phylogeography and Pleistocene refugia of the rockfern Asplenium ceterach: evidence from chloroplast DNA. Molecular Ecology, 2002, 11, 2003-2012.	3.9	167
84	A phylogenetic analysis of New Zealand giant and tree weta (Orthoptera : Anostostomatidae :) Tj ETQq0 0 0 rgBT 2001, 15, 1.	/Overlock 1.3	10 Tf 50 30 26
85	Chromosome races with Pliocene origins: evidence from mtDNA. Heredity, 2001, 86, 303-312.	2.6	47
86	Patterns of molecular genetic variation in Plantago major and P. intermedia in relation to ozone resistance. New Phytologist, 2000, 145, 501-509.	7.3	17
87	Characterization of a hybrid zone between two chromosomal races of the weta Hemideina thoracica following a geologically recent volcanic eruption. Heredity, 2000, 85, 586-592.	2.6	28
88	Phylogeographical pattern correlates with Pliocene mountain building in the alpine scree weta (Orthoptera, Anostostomatidae). Molecular Ecology, 2000, 9, 657-666.	3.9	120
89	Genetic structure and differentiation of Plantago major reveals a pair of sympatric sister species. Molecular Ecology, 1999, 8, 1027-1036.	3.9	30
90	PCR markers distinguish Plantago major subspecies. Theoretical and Applied Genetics, 1998, 96, 282-286.	3.6	59

#	Article	IF	CITATIONS
91	Intraspecific karyotype variation is not concordant with allozyme variation in the Auckland tree weta of New Zealand,Hemideina thoracica(Orthoptera: Stenopelmatidae). Biological Journal of the Linnean Society, 1997, 60, 423-442.	1.6	23
92	Hybridisation of tree weta on Banks Peninsula, New Zealand, and colour polymorphism within <i>Hemideina ricta</i> (Orthoptera: Stenopelmatidae). New Zealand Journal of Zoology, 1995, 22, 393-399.	1.1	11
93	A new species of tree weta from the North Island of New Zealand (HemideinaStenopelmatidae:) Tj ETQq1 1 0.784	·314 rgBT 0.3	/Qyerlock 1
94	Taxonomic status of tree weta from Stephens Island, Mt Holdsworth and Mt Arthur, based on allozyme variation. Journal of the Royal Society of New Zealand, 1995, 25, 301-312.	1.9	22
95	On the distribution of tree weta in the North Island, New Zealand. Journal of the Royal Society of New Zealand, 1995, 25, 485-493.	1.9	30