
## Dmitry A Semenov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4269508/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rosseland and Planck mean opacities for protoplanetary discs. Astronomy and Astrophysics, 2003, 410, 611-621.                                                                   | 5.1  | 422       |
| 2  | Chemistry in Protoplanetary Disks. Chemical Reviews, 2013, 113, 9016-9042.                                                                                                      | 47.7 | 188       |
| 3  | Grain Surface Models and Data for Astrochemistry. Space Science Reviews, 2017, 212, 1-58.                                                                                       | 8.1  | 177       |
| 4  | Chemistry in disks. Astronomy and Astrophysics, 2010, 522, A42.                                                                                                                 | 5.1  | 171       |
| 5  | Measuring turbulence in TW Hydrae with ALMA: methods and limitations. Astronomy and Astrophysics, 2016, 592, A49.                                                               | 5.1  | 141       |
| 6  | ALMA continuum observations of the protoplanetary disk AS 209. Astronomy and Astrophysics, 2018, 610, A24.                                                                      | 5.1  | 140       |
| 7  | Origin of the RNA world: The fate of nucleobases in warm little ponds. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11327-11332. | 7.1  | 139       |
| 8  | Reduction of chemical networks. Astronomy and Astrophysics, 2004, 417, 93-106.                                                                                                  | 5.1  | 129       |
| 9  | CHEMICAL EVOLUTION OF TURBULENT PROTOPLANETARY DISKS AND THE SOLAR NEBULA. Astrophysical Journal, Supplement Series, 2011, 196, 25.                                             | 7.7  | 129       |
| 10 | CHEMISTRY OF A PROTOPLANETARY DISK WITH GRAIN SETTLING AND LyÎ $\pm$ RADIATION. Astrophysical Journal, 2011, 726, 29.                                                           | 4.5  | 111       |
| 11 | Retrieving scattering clouds and disequilibrium chemistry in the atmosphere of HR 8799e. Astronomy and Astrophysics, 2020, 640, A131.                                           | 5.1  | 107       |
| 12 | Chemical evolution in the early phases of massive star formation. I. Astronomy and Astrophysics, 2014, 563, A97.                                                                | 5.1  | 98        |
| 13 | CHEMODYNAMICAL DEUTERIUM FRACTIONATION IN THE EARLY SOLAR NEBULA: THE ORIGIN OF WATER ON EARTH AND IN ASTEROIDS AND COMETS. Astrophysical Journal, 2014, 784, 39.               | 4.5  | 86        |
| 14 | Ethynyl (C <sub>2</sub> H) in Massive Star formation: Tracing the Initial Conditions?. Astrophysical<br>Journal, 2008, 675, L33-L36.                                            | 4.5  | 79        |
| 15 | NEW EXTENDED DEUTERIUM FRACTIONATION MODEL: ASSESSMENT AT DENSE ISM CONDITIONS AND SENSITIVITY ANALYSIS. Astrophysical Journal, Supplement Series, 2013, 207, 27.               | 7.7  | 76        |
| 16 | Temperature, Mass, and Turbulence: A Spatially Resolved Multiband Non-LTE Analysis of CS in TW Hya.<br>Astrophysical Journal, 2018, 864, 133.                                   | 4.5  | 75        |
| 17 | Chemistry in Protoplanetary Disks: A Sensitivity Analysis. Astrophysical Journal, 2008, 672, 629-641.                                                                           | 4.5  | 75        |
| 18 | PROTOPLANETARY DISK STRUCTURE WITH GRAIN EVOLUTION: THE ANDES MODEL. Astrophysical Journal, 2013, 766, 8.                                                                       | 4.5  | 74        |

ΟΜΙΤRY Α SEMENOV

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | First Detection of the Simplest Organic Acid in a Protoplanetary Disk*. Astrophysical Journal Letters, 2018, 862, L2.                                                                             | 8.3 | 73        |
| 20 | CHEMISTRY IN DISKS. III. PHOTOCHEMISTRY AND X-RAY DRIVEN CHEMISTRY PROBED BY THE ETHYNYL RADICAL (CCH) IN DM Tau, LkCa 15, AND MWC 480. Astrophysical Journal, 2010, 714, 1511-1520.              | 4.5 | 72        |
| 21 | Gas-Phase CO in Protoplanetary Disks: A Challenge for Turbulent Mixing. Astrophysical Journal, 2006,<br>647, L57-L60.                                                                             | 4.5 | 71        |
| 22 | Chemistry in disks. Astronomy and Astrophysics, 2007, 464, 615-623.                                                                                                                               | 5.1 | 71        |
| 23 | Rotating molecular outflows: the young T Tauri star in CB 26. Astronomy and Astrophysics, 2009, 494, 147-156.                                                                                     | 5.1 | 70        |
| 24 | A UNIFIED MONTE CARLO TREATMENT OF GAS-GRAIN CHEMISTRY FOR LARGE REACTION NETWORKS. I.<br>TESTING VALIDITY OF RATE EQUATIONS IN MOLECULAR CLOUDS. Astrophysical Journal, 2009, 691,<br>1459-1469. | 4.5 | 66        |
| 25 | Chemistry in disks. Astronomy and Astrophysics, 2012, 548, A70.                                                                                                                                   | 5.1 | 64        |
| 26 | CHEMISTRY IN DISKS. VII. FIRST DETECTION OF HC <sub>3</sub> N IN PROTOPLANETARY DISKS. Astrophysical Journal, 2012, 756, 58.                                                                      | 4.5 | 61        |
| 27 | Cavities in inner disks: the GM Aurigae case. Astronomy and Astrophysics, 2008, 490, L15-L18.                                                                                                     | 5.1 | 57        |
| 28 | Millimeter Observations and Modeling of the AB Aurigae System. Astrophysical Journal, 2005, 621, 853-874.                                                                                         | 4.5 | 54        |
| 29 | Gas Mass Tracers in Protoplanetary Disks: CO is Still the Best. Astrophysical Journal, 2017, 849, 130.                                                                                            | 4.5 | 54        |
| 30 | Influence of uncertainties in the rate constants of chemical reactions on astrochemical modeling results. Astronomy Letters, 2004, 30, 566-576.                                                   | 1.0 | 52        |
| 31 | A NEW MODIFIED-RATE APPROACH FOR GAS-GRAIN CHEMISTRY: COMPARISON WITH A UNIFIED LARGE-SCALE MONTE CARLO SIMULATION. Astrophysical Journal, 2009, 700, L43-L46.                                    | 4.5 | 52        |
| 32 | Chemistry in disks. Astronomy and Astrophysics, 2011, 535, A104.                                                                                                                                  | 5.1 | 49        |
| 33 | Chemistry in disks. Astronomy and Astrophysics, 2016, 592, A124.                                                                                                                                  | 5.1 | 48        |
| 34 | Resolving the chemical substructure of Orion-KL. Astronomy and Astrophysics, 2015, 581, A71.                                                                                                      | 5.1 | 47        |
| 35 | Efficiency of thermal relaxation by radiative processes in protoplanetary discs: constraints on hydrodynamic turbulence. Astronomy and Astrophysics, 2017, 605, A30.                              | 5.1 | 47        |
| 36 | The Flying Saucer: Tomography of the thermal and density gas structure of an edge-on protoplanetary disk. Astronomy and Astrophysics, 2017, 607, A130.                                            | 5.1 | 47        |

DMITRY A SEMENOV

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Chemistry in disks. Astronomy and Astrophysics, 2015, 574, A137.                                                                                                                         | 5.1 | 46        |
| 38 | Chemistry in disks. Astronomy and Astrophysics, 2018, 617, A28.                                                                                                                          | 5.1 | 45        |
| 39 | Molecular Line Radiative Transfer in Protoplanetary Disks: Monte Carlo Simulations versus<br>Approximate Methods. Astrophysical Journal, 2007, 669, 1262-1278.                           | 4.5 | 44        |
| 40 | Probing Dust around Brown Dwarfs: The Naked LP 944-20 and the Disk of Chamaeleon Hα 2.<br>Astrophysical Journal, 2002, 573, L115-L117.                                                   | 4.5 | 40        |
| 41 | A database of optical constants of cosmic dust analogs. Journal of Quantitative Spectroscopy and<br>Radiative Transfer, 2003, 79-80, 765-774.                                            | 2.3 | 38        |
| 42 | Chemical evolution in the early phases of massive star formation. Astronomy and Astrophysics, 2015, 579, A80.                                                                            | 5.1 | 38        |
| 43 | Gas Density Perturbations Induced by One or More Forming Planets in the AS 209 Protoplanetary Disk<br>as Seen with ALMA. Astrophysical Journal, 2019, 871, 107.                          | 4.5 | 38        |
| 44 | Gas-phase CO depletion and N <sub>2</sub> H <sup>+</sup> abundances in starless cores. Astronomy and Astrophysics, 2013, 560, A41.                                                       | 5.1 | 37        |
| 45 | A Rotating Disk around the Very Young Massive Star AFGL 490. Astrophysical Journal, 2006, 637, L129-L132.                                                                                | 4.5 | 36        |
| 46 | A Surface Density Perturbation in the TW Hydrae Disk at 95 au Traced by Molecular Emission.<br>Astrophysical Journal, 2017, 835, 228.                                                    | 4.5 | 35        |
| 47 | Physical and Chemical Structure of Planet-Forming Disks Probed by Millimeter Observations and Modeling. , 2014, , .                                                                      |     | 33        |
| 48 | 3D continuum radiative transfer in complex dust configurations around stellar objects and active galactic nuclei. Astronomy and Astrophysics, 2003, 401, 405-418.                        | 5.1 | 32        |
| 49 | Towards detecting methanol emission in low-mass protoplanetary discs with ALMA: the role of non-LTE excitation. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2648-2663. | 4.4 | 31        |
| 50 | Chemical and Thermal Structure of Protoplanetary Disks as Observed with ALMA. Astrophysical<br>Journal, 2008, 673, L195-L198.                                                            | 4.5 | 30        |
| 51 | Deuterium Fractionation: The Ariadne's Thread from the Precollapse Phase to Meteorites and Comets<br>Today. , 2014, , .                                                                  |     | 30        |
| 52 | Chemical and isotopic evolution of the solar nebula and protoplanetary disks. , 2010, , 97-127.                                                                                          |     | 29        |
| 53 | Chemical Signatures of the FU Ori Outbursts. Astrophysical Journal, 2018, 866, 46.                                                                                                       | 4.5 | 29        |
| 54 | Chemistry in disks. Astronomy and Astrophysics, 2008, 491, 821-827.                                                                                                                      | 5.1 | 29        |

DMITRY A SEMENOV

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The shadow of the Flying Saucer: A very low temperature for large dust grains. Astronomy and Astrophysics, 2016, 586, L1.                                                                                        | 5.1 | 28        |
| 56 | Reduction of chemical networks. Astronomy and Astrophysics, 2003, 399, 197-210.                                                                                                                                  | 5.1 | 27        |
| 57 | Molecular Emission Line Formation in Prestellar Cores. Astrophysical Journal, 2008, 689, 335-350.                                                                                                                | 4.5 | 25        |
| 58 | Magnetic diffusivities in 3D radiative chemo-hydrodynamic simulations of protostellar collapse.<br>Astronomy and Astrophysics, 2017, 603, A105.                                                                  | 5.1 | 22        |
| 59 | Luminosity outburst chemistry in protoplanetary discs: going beyond standard tracers. Monthly<br>Notices of the Royal Astronomical Society, 2019, 485, 1843-1863.                                                | 4.4 | 22        |
| 60 | FIRST TIME-DEPENDENT STUDY OF H <sub>2</sub> AND H\$_3^+\$ <i>ORTHOPARA</i> CHEMISTRY IN<br>THE DIFFUSE INTERSTELLAR MEDIUM: OBSERVATIONS MEET THEORETICAL PREDICTIONS. Astrophysical<br>Journal, 2014, 787, 44. | 4.5 | 21        |
| 61 | Physical properties and chemical composition of the cores in the California molecular cloud.<br>Astronomy and Astrophysics, 2018, 620, A163.                                                                     | 5.1 | 21        |
| 62 | Importance of the H <sub>2</sub> abundance in protoplanetary disk ices for the molecular layer chemical composition. Astronomy and Astrophysics, 2016, 594, A35.                                                 | 5.1 | 17        |
| 63 | Tracing the evolutionary stage of Bok globules: CCS and NH <sub>3</sub> . Astronomy and Astrophysics, 2012, 537, A4.                                                                                             | 5.1 | 14        |
| 64 | Lack of other molecules in CO-rich debris discs: is it primordial or secondary gas?. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1148-1162.                                                    | 4.4 | 13        |
| 65 | Fragmentation, rotation, and outflows in the high-mass star-forming region IRAS 23033+5951.<br>Astronomy and Astrophysics, 2019, 629, A10.                                                                       | 5.1 | 12        |
| 66 | Modeling the NIR-silhouette massive disk candidate in M 17. Astronomy and Astrophysics, 2006, 456, 1013-1026.                                                                                                    | 5.1 | 12        |
| 67 | Discovery of Molecular-line Polarization in the Disk of TW Hya. Astrophysical Journal, 2021, 922, 139.                                                                                                           | 4.5 | 10        |
| 68 | The HIFI spectral survey of AFGL 2591 (CHESS). Astronomy and Astrophysics, 2015, 574, A71.                                                                                                                       | 5.1 | 9         |
| 69 | The temperature of nonspherical circumstellar dust grains. Astronomy Letters, 2000, 26, 679-690.                                                                                                                 | 1.0 | 8         |
| 70 | Using HCO <sup>+</sup> isotopologues as tracers of gas depletion in protoplanetary disk gaps.<br>Astronomy and Astrophysics, 2020, 644, A4.                                                                      | 5.1 | 8         |
| 71 | Mass determination of protoplanetary disks from dust evolution. Astronomy and Astrophysics, 2022, 657, A74.                                                                                                      | 5.1 | 7         |
| 72 | COLD CO GAS IN THE DISK OF THE YOUNG ERUPTIVE STAR EX LUP. Astrophysical Journal Letters, 2016, 821, L4.                                                                                                         | 8.3 | 6         |

DMITRY A SEMENOV

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The chemical structure of the Class 0 protostellar envelope NGC 1333 IRAS 4A. Astronomy and Astrophysics, 2017, 603, A88.                                                                   | 5.1 | 6         |
| 74 | VLA cm-wave survey of young stellar objects in the Oph A cluster: constraining extreme UV- and X-ray-driven disk photoevaporation. Astronomy and Astrophysics, 2019, 631, A58.              | 5.1 | 6         |
| 75 | Possible Ribose Synthesis in Carbonaceous Planetesimals. Life, 2022, 12, 404.                                                                                                               | 2.4 | 6         |
| 76 | Molecular structure of brown-dwarf disks. Astronomy Reports, 2008, 52, 941-949.                                                                                                             | 0.9 | 4         |
| 77 | ALMA and VLA Observations of EX Lupi in Its Quiescent State. Astrophysical Journal, 2020, 904, 37.                                                                                          | 4.5 | 4         |
| 78 | The birth and death of organic molecules in protoplanetary disks. Proceedings of the International Astronomical Union, 2008, 4, 89-98.                                                      | 0.0 | 3         |
| 79 | On the methanol emission detection in the TW Hya disc: the role of grain surface chemistry and non-LTE excitation. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2024-2031. | 4.4 | 3         |
| 80 | Dark cloud-type chemistry in photodissociation regions with moderate ultraviolet field. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3810-3829.                            | 4.4 | 3         |
| 81 | Resolving the chemical substructure of Orion-KL <i>(Corrigendum)</i> . Astronomy and Astrophysics, 2016, 590, C1.                                                                           | 5.1 | 3         |
| 82 | Chemical Evolution of a Protoplanetary Disk. Proceedings of the International Astronomical Union, 2011, 7, 114-126.                                                                         | 0.0 | 1         |
| 83 | Accretion disks around young stars: the cradles of planet formation. Europhysics News, 2020, 51, 29-32.                                                                                     | 0.3 | 1         |
| 84 | Modeling deuterium chemistry of interstellar space with large chemical networks. Proceedings of the International Astronomical Union, 2012, 10, 624-625.                                    | 0.0 | 0         |
| 85 | Episodic accretion in focus: revealing the environment of FU Orionis-type stars. Proceedings of the<br>International Astronomical Union, 2018, 14, 87-90.                                   | 0.0 | 0         |
| 86 | Chemical modeling of FU Ori protoplanetary disks. Proceedings of the International Astronomical Union, 2018, 14, 367-368.                                                                   | 0.0 | 0         |
| 87 | Protoplanetary Disk, Chemistry. , 2014, , 1-17.                                                                                                                                             |     | 0         |
| 88 | Toward a Chemical Evolutionary Sequence in High-Mass Star Formation. Thirty Years of Astronomical Discovery With UKIRT, 2014, , 415-416.                                                    | 0.3 | 0         |
| 89 | The Ionization State of Protoplanetary Disks: The Chemical View. Springer Proceedings in Physics, 1997, , 555-560.                                                                          | 0.2 | 0         |
|    |                                                                                                                                                                                             |     |           |

90 Protoplanetary Disk, Chemistry. , 2015, , 2058-2073.