
Kalyan K Sadhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/426898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Syntheses of metal oxide-gold nanocomposites for biological applications. Results in Chemistry, 2022, 4, 100288.	2.0	5
2	Methionine-Controlled Impediment of Secondary Nucleation Leading to Nonclassical Growth within Self-Assembled <i>De Novo</i> Gold Nanoparticles. Langmuir, 2022, 38, 5865-5873.	3.5	4
3	Diverse interactions of aggregated insulin with selected coumarin dyes: Time dependent fluorogenicity, simulation studies and comparison with thioflavin T. Dyes and Pigments, 2021, 184, 108796.	3.7	1
4	Green Synthesis of Luminescent Gold-Zinc Oxide Nanocomposites: Cell Imaging and Visible Light–Induced Dye Degradation. Frontiers in Chemistry, 2021, 9, 639090.	3.6	12
5	Two instantaneous fluorogenic steps for detection of nanomolar amyloid beta monomer and its interaction with stoichiometric copper(II) ion. Sensors and Actuators B: Chemical, 2020, 303, 127086.	7.8	7
6	Caprinâ€1 Promotes Cellular Uptake of Nucleic Acids with Backbone and Sequence Discrimination. Helvetica Chimica Acta, 2020, 103, e1900255.	1.6	4
7	Frontispiece: Selective Release of Doxorubicin from Cucurbit[8]uril Stabilized Gold Supraâ€Pyramid Host at pH of Small Intestine. Chemistry - A European Journal, 2020, 26, .	3.3	0
8	Selective Release of Doxorubicin from Cucurbit[8]uril Stabilized Gold Supraâ€Pyramid Host at pH of Small Intestine. Chemistry - A European Journal, 2020, 26, 15150-15158.	3.3	4
9	Time-Dependent Growth of Gold Nanoparticles: Experimental Correlation of van der Waals Contact between DNA and Amino Acids with Polar Uncharged Side Chains. Journal of Physical Chemistry C, 2019, 123, 20319-20324.	3.1	4
10	Citrate Stabilized Auâ€FexOy Nanocomposites for Variable Exchange Bias, Catalytic Properties and Reversible Interaction with Doxorubicin. ChemistrySelect, 2019, 4, 8237-8245.	1.5	3
11	Gold Nanoflower for Selective Detection of Single Arginine Effect in α-Helix Conformational Change over Lysine in 3 ₁₀ -Helix Peptide. Bioconjugate Chemistry, 2019, 30, 1781-1787.	3.6	7
12	Tryptophan-Stabilized Au–Fe _x O _y Nanocomposites as Electrocatalysts for Oxygen Evolution Reaction. ACS Omega, 2019, 4, 3385-3391.	3.5	4
13	Formation of Growthâ€Mediated Gold Nanoflowers: Roles of the Reducing Agent and Amineâ€Modified, Singleâ€6trand DNA Sequences. ChemPlusChem, 2019, 84, 112-118.	2.8	6
14	Regioisomeric cryptand stabilized gold supraspheres and elongated dodecahedron supraparticles for reversible host–guest chemistry. Chemical Communications, 2018, 54, 12836-12839.	4.1	10
15	Fluorogen-free aggregation induced NIR emission from gold nanoparticles. Chemical Communications, 2017, 53, 6199-6202.	4.1	8
16	Highly selective tridentate fluorescent probes for visualizing intracellular Mg2+ dynamics without interference from Ca2+ fluctuation. Chemical Communications, 2017, 53, 10644-10647.	4.1	24
17	Nucleic Acid Templated Chemical Reaction in a Live Vertebrate. ACS Central Science, 2016, 2, 394-400.	11.3	71
18	In cellulo protein labelling with Ru-conjugate for luminescence imaging and bioorthogonal photocatalysis. Chemical Communications, 2015, 51, 16664-16666.	4.1	35

Kalyan K Sadhu

#	Article	IF	CITATIONS
19	pH Induced dual "OFF–ON–OFF―switch: influence of a suitably placed carboxylic acid. Organic and Biomolecular Chemistry, 2013, 11, 563-568.	2.8	23
20	Selective affinity-based probe for oncogenic kinases suitable for live cell imaging. Chemical Science, 2013, 4, 2088.	7.4	22
21	Detection of miRNA in Live Cells by Using Templated Ru ^{II} atalyzed Unmasking of a Fluorophore. Chemistry - A European Journal, 2013, 19, 8182-8189.	3.3	83
22	Nucleic Acid-tagged Peptides: Encoding Libraries and Controlling Dimerization and Conformation. Chimia, 2013, 67, 905-909.	0.6	6
23	DNA as a Platform to Program Assemblies with Emerging Functions in Chemical Biology. Israel Journal of Chemistry, 2013, 53, 75-86.	2.3	19
24	Photoreductive Uncaging of Fluorophore in Response to Protein Oligomers by Templated Reaction <i>in Vitro</i> and <i>in Cellulo</i> . Journal of the American Chemical Society, 2012, 134, 20013-20016.	13.7	61
25	Fluorogenic Protein Labeling through Photoinduced Electron Transferâ€Based BLâ€Tag Technology. Chemistry - an Asian Journal, 2012, 7, 272-276.	3.3	6
26	Inside Cover: Fluorogenic Protein Labeling through Photoinduced Electron Transfer-Based BL-Tag Technology (Chem. Asian J. 2/2012). Chemistry - an Asian Journal, 2012, 7, 246-246.	3.3	0
27	Sequential ordering among multicolor fluorophores for protein labeling facility via aggregation-elimination based β-lactam probes. Molecular BioSystems, 2011, 7, 1766.	2.9	9
28	Cryptand derived fluorescence signaling systems for sensing Hg(<scp>ii</scp>) ion: A comparative study. Dalton Transactions, 2011, 40, 726-734.	3.3	24
29	Switching Modulation for Protein Labeling with Activatable Fluorescent Probes. ChemBioChem, 2011, 12, 1299-1308.	2.6	11
30	Turn-on fluorescence switch involving aggregation and elimination processes for β-lactamase-tag. Chemical Communications, 2010, 46, 7403.	4.1	31
31	Role of spacer in single- or two-step FRET: studies in the presence of two connected cryptands with properly chosen fluorophores. Dalton Transactions, 2010, 39, 4146.	3.3	13
32	Ag(i) induced emission with azines having donor–acceptor–donor chromophore. Dalton Transactions, 2009, , 5683.	3.3	18
33	Cryptand cage: perfect skeleton for transition metal induced two-step fluorescence resonance energy transfer. Chemical Communications, 2009, , 4982.	4.1	18
34	Translocation of copper within the cavity of cryptands: reversible fluorescence signaling. Chemical Communications, 2008, , 4180.	4.1	12
35	Transition-Metal-Induced Fluorescence Resonance Energy Transfer in a Cryptand Derivatized with Two Different Fluorophores. Inorganic Chemistry, 2007, 46, 8051-8058.	4.0	19
36	Metal induced enhancement of fluorescence and modulation of two-photon absorption cross-section with a donor–acceptor–acceptor–donor receptor. Journal of Organometallic Chemistry, 2007, 692, 4969-4977.	1.8	11

#	Article	IF	CITATIONS
37	A multi-receptor fluorescence signaling system exhibiting enhancement selectively in presence of Na(I) and Tl(I) ions. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 231-238.	3.9	10
38	Origin of luminescence properties and the synthetic methods for gold and bimetallic gold-based nanomaterials. Materials Advances, 0, , .	5.4	1