
## Qiurong Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4268750/publications.pdf Version: 2024-02-01



OULDONG SHI

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A MnO <sub><i>x</i></sub> enhanced atomically dispersed iron–nitrogen–carbon catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 5981-5989.                                                 | 10.3 | 18        |
| 2  | Au@PtPd enhanced immunoassay with 3D printed smartphone device for quantification of diaminochlorotriazine (DACT), the major atrazine biomarker. Biosensors and Bioelectronics, 2022, 208, 114190.                              | 10.1 | 7         |
| 3  | Bimetallic Ir <sub><i>x</i></sub> Pb nanowire networks with enhanced electrocatalytic activity for the oxygen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 11196-11204.                                      | 10.3 | 6         |
| 4  | Solving the activity–stability trade-off riddle. Nature Catalysis, 2021, 4, 6-7.                                                                                                                                                | 34.4 | 24        |
| 5  | Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design<br>Highâ€Efficient Atomically Dispersed CoN <sub>4</sub> Active Sites. Angewandte Chemie - International<br>Edition, 2021, 60, 9516-9526. | 13.8 | 119       |
| 6  | Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design<br>Highâ€Efficient Atomically Dispersed CoN <sub>4</sub> Active Sites. Angewandte Chemie, 2021, 133,<br>9602-9612.                        | 2.0  | 21        |
| 7  | Boosting the activity of Fe-Nx moieties in Fe-N-C electrocatalysts via phosphorus doping for oxygen reduction reaction. Science China Materials, 2020, 63, 965-971.                                                             | 6.3  | 71        |
| 8  | Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site<br>Catalysts. Angewandte Chemie, 2020, 132, 21882-21889.                                                                          | 2.0  | 10        |
| 9  | Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site<br>Catalysts. Angewandte Chemie - International Edition, 2020, 59, 21698-21705.                                                   | 13.8 | 128       |
| 10 | Highly quaternized polystyrene ionomers for high performance anion exchange membrane water<br>electrolysers. Nature Energy, 2020, 5, 378-385.                                                                                   | 39.5 | 372       |
| 11 | Supported and coordinated single metal site electrocatalysts. Materials Today, 2020, 37, 93-111.                                                                                                                                | 14.2 | 71        |
| 12 | Eyeball-Like Yolk–Shell Bimetallic Nanoparticles for Synergistic Photodynamic–Photothermal<br>Therapy. ACS Applied Bio Materials, 2020, 3, 5922-5929.                                                                           | 4.6  | 18        |
| 13 | Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping.<br>ACS Catalysis, 2020, 10, 2452-2458.                                                                                     | 11.2 | 103       |
| 14 | Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding<br>and high-performance direct methanol fuel cells. Energy and Environmental Science, 2020, 13,<br>3544-3555.                 | 30.8 | 129       |
| 15 | Pt–Ni(OH)2 nanosheets amplified two-way lateral flow immunoassays with smartphone readout for quantification of pesticides. Biosensors and Bioelectronics, 2019, 142, 111498.                                                   | 10.1 | 70        |
| 16 | Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed<br>Fe–Nx moieties hosted by MOF derived porous carbon. Biosensors and Bioelectronics, 2019, 142, 111495.                          | 10.1 | 186       |
| 17 | Peptoid Nanotubes: Bioinspired Peptoid Nanotubes for Targeted Tumor Cell Imaging and Chemoâ€₽hotodynamic Therapy (Small 43/2019). Small, 2019, 15, 1970231.                                                                     | 10.0 | 1         |
| 18 | Highly Dispersed Platinum Atoms on the Surface of AuCu Metallic Aerogels for Enabling<br>H <sub>2</sub> O <sub>2</sub> Production. ACS Applied Energy Materials, 2019, 2, 7722-7727.                                            | 5.1  | 31        |

QIURONG SHI

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Bioinspired Peptoid Nanotubes for Targeted Tumor Cell Imaging and Chemoâ€Photodynamic Therapy.<br>Small, 2019, 15, e1902485.                                                                                                                    | 10.0 | 51        |
| 20 | Au@Pd Nanopopcorn and Aptamer Nanoflower Assisted Lateral Flow Strip for Thermal Detection of Exosomes. Analytical Chemistry, 2019, 91, 13986-13993.                                                                                            | 6.5  | 86        |
| 21 | Metal–organic frameworks-based catalysts for electrochemical oxygen evolution. Materials<br>Horizons, 2019, 6, 684-702.                                                                                                                         | 12.2 | 149       |
| 22 | Electrically Switched Ion Exchange Based on Carbon-Polypyrrole Composite Smart Materials for the<br>Removal of ReO <sub>4</sub> <sup>–</sup> from Aqueous Solutions. Environmental Science &<br>Technology, 2019, 53, 2612-2617.                | 10.0 | 26        |
| 23 | Secondary-Atom-Assisted Synthesis of Single Iron Atoms Anchored on N-Doped Carbon Nanowires for<br>Oxygen Reduction Reaction. ACS Catalysis, 2019, 9, 5929-5934.                                                                                | 11.2 | 149       |
| 24 | Rapid and selective detection of Fe (III) by using a smartphone-based device as a portable detector and hydroxyl functionalized metal-organic frameworks as the fluorescence probe. Analytica Chimica Acta, 2019, 1077, 160-166.                | 5.4  | 40        |
| 25 | Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chemical Society Reviews, 2019, 48, 3181-3192.                                                                                                                         | 38.1 | 756       |
| 26 | Assembling Carbon Pores into Carbon Sheets: Rational Design of Three-Dimensional Carbon Networks<br>for a Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2019, 11, 5911-5918.                                                      | 8.0  | 24        |
| 27 | Core–shell PdPb@Pd aerogels with multiply-twinned intermetallic nanostructures: facile synthesis<br>with accelerated gelation kinetics and their enhanced electrocatalytic properties. Journal of<br>Materials Chemistry A, 2018, 6, 7517-7521. | 10.3 | 49        |
| 28 | Ultrathin dendritic IrTe nanotubes for an efficient oxygen evolution reaction in a wide pH range.<br>Journal of Materials Chemistry A, 2018, 6, 8855-8859.                                                                                      | 10.3 | 54        |
| 29 | Catalytic Activity of Co–X (X = S, P, O) and Its Dependency on Nanostructure/Chemical Composition in<br>Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2018, 1, 7014-7021.                                                             | 5.1  | 46        |
| 30 | Nanovoid Incorporated Ir <sub><i>x</i></sub> Cu Metallic Aerogels for Oxygen Evolution Reaction<br>Catalysis. ACS Energy Letters, 2018, 3, 2038-2044.                                                                                           | 17.4 | 129       |
| 31 | Hierarchically Porous M–N–C (M = Co and Fe) Singleâ€Atom Electrocatalysts with Robust<br>MN <i><sub>x</sub></i> Active Moieties Enable Enhanced ORR Performance. Advanced Energy<br>Materials, 2018, 8, 1801956.                                | 19.5 | 540       |
| 32 | Ultrafine Pd ensembles anchored-Au2Cu aerogels boost ethanol electrooxidation. Nano Energy, 2018,<br>53, 206-212.                                                                                                                               | 16.0 | 54        |
| 33 | Single-Atom Catalysts for Electrochemical Water Splitting. ACS Energy Letters, 2018, 3, 1713-1721.                                                                                                                                              | 17.4 | 294       |
| 34 | Selfâ€Assembled Fe–Nâ€Doped Carbon Nanotube Aerogels with Singleâ€Atom Catalyst Feature as<br>Highâ€Efficiency Oxygen Reduction Electrocatalysts. Small, 2017, 13, 1603407.                                                                     | 10.0 | 254       |
| 35 | Highly uniform distribution of Pt nanoparticles on N-doped hollow carbon spheres with enhanced durability for oxygen reduction reaction. RSC Advances, 2017, 7, 6303-6308.                                                                      | 3.6  | 44        |
| 36 | Einzelatomâ€Elektrokatalysatoren. Angewandte Chemie, 2017, 129, 14132-14148.                                                                                                                                                                    | 2.0  | 99        |

QIURONG SHI

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Singleâ€Atom Electrocatalysts. Angewandte Chemie - International Edition, 2017, 56, 13944-13960.                                                                                                                  | 13.8 | 1,040     |
| 38 | Intermetallic Pd <sub>3</sub> Pb nanowire networks boost ethanol oxidation and oxygen reduction reactions with significantly improved methanol tolerance. Journal of Materials Chemistry A, 2017, 5, 23952-23959. | 10.3 | 78        |
| 39 | One-step synthesis of carbon nanosheet-decorated carbon nanofibers as a 3D interconnected porous<br>carbon scaffold for lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 23737-23743.         | 10.3 | 36        |
| 40 | Kinetically controlled synthesis of AuPt bi-metallic aerogels and their enhanced electrocatalytic performances. Journal of Materials Chemistry A, 2017, 5, 19626-19631.                                           | 10.3 | 44        |
| 41 | Mitochondrial-targeted multifunctional mesoporous Au@Pt nanoparticles for dual-mode photodynamic and photothermal therapy of cancers. Nanoscale, 2017, 9, 15813-15824.                                            | 5.6  | 67        |
| 42 | Sugar Blowingâ€Induced Porous Cobalt Phosphide/Nitrogenâ€Doped Carbon Nanostructures with<br>Enhanced Electrochemical Oxidation Performance toward Water and Other Small Molecules. Small,<br>2017, 13, 1700796.  | 10.0 | 65        |
| 43 | A Facile Method for Synthesizing Dendritic Core–Shell Structured Ternary Metallic Aerogels and<br>Their Enhanced Electrochemical Performances. Chemistry of Materials, 2016, 28, 7928-7934.                       | 6.7  | 60        |
| 44 | 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion.<br>Nanoscale, 2016, 8, 15414-15447.                                                                              | 5.6  | 127       |
| 45 | Efficient Synthesis of MCu (M = Pd, Pt, and Au) Aerogels with Accelerated Gelation Kinetics and their<br>High Electrocatalytic Activity. Advanced Materials, 2016, 28, 8779-8783.                                 | 21.0 | 213       |
| 46 | PtCu bimetallic alloy nanotubes with porous surface for oxygen reduction reaction. RSC Advances, 2016, 6, 69233-69238.                                                                                            | 3.6  | 11        |
| 47 | One-Pot Fabrication of Mesoporous Core–Shell Au@PtNi Ternary Metallic Nanoparticles and Their<br>Enhanced Efficiency for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8,<br>4739-4744.    | 8.0  | 54        |
| 48 | Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions. Nanoscale, 2016, 8, 5076-5081.                                                      | 5.6  | 55        |
| 49 | Enhanced electrocatalytic activities of three dimensional PtCu@Pt bimetallic alloy nanofoams for oxygen reduction reaction. Catalysis Science and Technology, 2016, 6, 5052-5059.                                 | 4.1  | 27        |
| 50 | Synthesis of open-mouthed, yolk–shell Au@AgPd nanoparticles with access to interior surfaces for enhanced electrocatalysis. Chemical Science, 2015, 6, 4350-4357.                                                 | 7.4  | 77        |
| 51 | Ultrasonic-assisted synthesis of carbon nanotube supported bimetallic Pt–Ru nanoparticles for effective methanol oxidation. Journal of Materials Chemistry A, 2015, 3, 8459-8465.                                 | 10.3 | 63        |
| 52 | Mesoporous Pt Nanotubes as a Novel Sensing Platform for Sensitive Detection of Intracellular<br>Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2015, 7, 24288-24295.                                      | 8.0  | 57        |