
Chuang Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4268714/publications.pdf Version: 2024-02-01

Снимые Сио

#	Article	IF	CITATIONS
1	Single-cell transcriptomics reveal a unique memory-like NK cell subset that accumulates with ageing and correlates with disease severity in COVID-19. Genome Medicine, 2022, 14, 46.	8.2	19
2	Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nature Methods, 2022, 19, 662-670.	19.0	130
3	A transcriptome atlas and interactive analysis platform for autoimmune disease. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	3.0	2
4	Single-cell profiling of the human decidual immune microenvironment in patients with recurrent pregnancy loss. Cell Discovery, 2021, 7, 1.	6.7	152
5	COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell, 2021, 184, 1895-1913.e19.	28.9	512
6	Chromatin accessibility landscapes of immune cells in rheumatoid arthritis nominate monocytes in disease pathogenesis. BMC Biology, 2021, 19, 79.	3.8	5
7	Single-cell analysis of COVID-19, sepsis, and HIV infection reveals hyperinflammatory and immunosuppressive signatures in monocytes. Cell Reports, 2021, 37, 109793.	6.4	29
8	Restoration of HBV-specific CD8+ T-cell responses by sequential low-dose IL-2 treatment in non-responder patients after IFN-α therapy. Signal Transduction and Targeted Therapy, 2021, 6, 376.	17.1	32
9	Chromatin accessibility landscapes of skin cells in systemic sclerosis nominate dendritic cells in disease pathogenesis. Nature Communications, 2020, 11, 5843.	12.8	22
10	Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm. Nature Communications, 2020, 11, 3924.	12.8	180
11	Immunomodulation Induced During Interferon- $\hat{I}\pm$ Therapy Impairs the Anti-HBV Immune Response Through CD24+CD38hi B Cells. Frontiers in Immunology, 2020, 11, 591269.	4.8	11
12	Comparative analysis of single-cell RNA-seq cluster methods. AIP Conference Proceedings, 2020, , .	0.4	0
13	KIR3DS1/HLA-B Bw4-80lle Genotype Is Correlated with the IFN-Î \pm Therapy Response in hepatitis B e antigen-Positive Chronic Hepatitis B. Frontiers in Immunology, 2017, 8, 1285.	4.8	6
14	CD3brightCD56+ T cells associate with pegylated interferon-alpha treatment nonresponse in chronic hepatitis B patients. Scientific Reports, 2016, 6, 25567.	3.3	9
15	NKp30+ NK cells are associated with HBV control during pegylated-interferon-alpha-2b therapy of chronic hepatitis B. Scientific Reports, 2016, 6, 38778.	3.3	16
16	MicroRNA transcriptomes of distinct human NK cell populations identify miR-362-5p as an essential regulator of NK cell function. Scientific Reports, 2015, 5, 9993.	3.3	60
17	MicroRNA-362-5p promotes tumor growth and metastasis by targeting CYLD in hepatocellular carcinoma. Cancer Letters, 2015, 356, 809-818.	7.2	68