Ludwig Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4268131/publications.pdf Version: 2024-02-01

LUDWIC SCHNEIDER

#	Article	IF	CITATIONS
1	Is the "Bricks-and-Mortar―Mesophase Bicontinuous? Dynamic Simulations of Miktoarm Block Copolymer/Homopolymer Blends. Macromolecules, 2022, 55, 745-758.	4.8	3
2	Wall-Spring Thermostat: A Novel Approach for Controlling the Dynamics of Soft Coarse-Grained Polymer Fluids at Surfaces. Macromolecules, 2022, 55, 5550-5566.	4.8	2
3	Molecular simulations and hydrodynamic theory of nonlocal shear-stress correlations in supercooled fluids. Journal of Chemical Physics, 2022, 157, .	3.0	5
4	Dynamics and Rheology of Polymer Melts <i>via</i> Hierarchical Atomistic, Coarse-Grained, and Slip-Spring Simulations. Macromolecules, 2021, 54, 2740-2762.	4.8	40
5	Dynamics of Long Entangled Polyisoprene Melts <i>via</i> Multiscale Modeling. Macromolecules, 2021, 54, 8693-8713.	4.8	14
6	Combining Particle-Based Simulations and Machine Learning to Understand Defect Kinetics in Thin Films of Symmetric Diblock Copolymers. Macromolecules, 2021, 54, 10074-10085.	4.8	11
7	Symmetric Diblock Copolymers in Cylindrical Confinement: A Way to Chiral Morphologies?. ACS Applied Materials & Interfaces, 2020, 12, 50077-50095.	8.0	4
8	Rheology of symmetric diblock copolymers. Computational Materials Science, 2019, 169, 109107.	3.0	9
9	Engineering Scale Simulation of Nonequilibrium Network Phases for Battery Electrolytes. Macromolecules, 2019, 52, 2050-2062.	4.8	13
10	Multi-architecture Monte-Carlo (MC) simulation of soft coarse-grained polymeric materials: SOft coarse grained Monte-Carlo Acceleration (SOMA). Computer Physics Communications, 2019, 235, 463-476.	7.5	38
11	A Detailed Examination of the Topological Constraints of Lamellae-Forming Block Copolymers. Macromolecules, 2018, 51, 2110-2124.	4.8	19
12	Diblock Copolymers with Similar Glass Transition Temperatures in Both Blocks for Comparing Shear Orientation Processes with DPD Computer Simulations. Macromolecular Chemistry and Physics, 2018, 219, 1700559.	2.2	15
13	Transitions between Lamellar Orientations in Shear Flow. Macromolecules, 2018, 51, 4642-4659.	4.8	21
14	A multi-chain polymer slip-spring model with fluctuating number of entanglements: Density fluctuations, confinement, and phase separation. Journal of Chemical Physics, 2017, 146, 014903.	3.0	34
15	Mesoscopic Simulations of Crosslinked Polymer Networks. Journal of Physics: Conference Series, 2016, 738, 012063.	0.4	9