Robert Geisler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4267654/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abrogation of Stem Loop Binding Protein (Slbp) function leads to a failure of cells to transition from proliferation to differentiation, retinal coloboma and midline axon guidance deficits. PLoS ONE, 2019, 14, e0211073.	1.1	9
2	Mutation of a serine near the catalytic site of the choline acetyltransferase a gene almost completely abolishes motility of the zebrafish embryo. PLoS ONE, 2018, 13, e0207747.	1.1	9
3	Archiving of zebrafish lines can reduce animal experiments in biomedical research. EMBO Reports, 2017, 18, 1-2.	2.0	26
4	The Calcineurin-FoxO-MuRF1 signaling pathway regulates myofibril integrity in cardiomyocytes. ELife, 2017, 6, .	2.8	33
5	Spermidine, but not spermine, is essential for pigment pattern formation in zebrafish. Biology Open, 2016, 5, 736-744.	0.6	33
6	Maintenance of Zebrafish Lines at the European Zebrafish Resource Center. Zebrafish, 2016, 13, S-19-S-23.	0.5	25
7	<scp>S</scp> lc45a2 and <scp>V</scp> â€ <scp>ATP</scp> ase are regulators of melanosomal p <scp>H</scp> homeostasis in zebrafish, providing a mechanism for human pigment evolution and disease. Pigment Cell and Melanoma Research, 2013, 26, 205-217.	1.5	115
8	The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013, 496, 498-503.	13.7	3,708
9	EuFishBioMed (COST Action BM0804): A European Network to Promote the Use of Small Fishes in Biomedical Research. Zebrafish, 2012, 9, 90-93.	0.5	7
10	Zebrafish embryos as an alternative to animal experiments—A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reproductive Toxicology, 2012, 33, 128-132.	1.3	491
11	The Light Responsive Transcriptome of the Zebrafish: Function and Regulation. PLoS ONE, 2011, 6, e17080.	1.1	90
12	The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nature Genetics, 2011, 43, 79-84.	9.4	292
13	Aplexone targets the HMG-CoA reductase pathway and differentially regulates arteriovenous angiogenesis. Development (Cambridge), 2011, 138, 1173-1181.	1.2	59
14	Fine-tuning of Hh signaling by the RNA-binding protein Quaking to control muscle development. Development (Cambridge), 2011, 138, 1783-1794.	1.2	28
15	The zebrafish mutant bumper shows a hyperproliferation of lens epithelial cells and fibre cell degeneration leading to functional blindness. Mechanisms of Development, 2010, 127, 203-219.	1.7	17
16	The zebrafish dystrophic mutant <i>softy</i> maintains muscle fibre viability despite basement membrane rupture and muscle detachment. Development (Cambridge), 2009, 136, 3367-3376.	1.2	48
17	Simplet controls cell proliferation and gene transcription during zebrafish caudal fin regeneration. Developmental Biology, 2009, 325, 329-340.	0.9	45
18	Leukocyte Tyrosine Kinase Functions in Pigment Cell Development. PLoS Genetics, 2008, 4, e1000026.	1.5	137

ROBERT GEISLER

#	Article	IF	CITATIONS
19	The zebrafish mutant <i>lbk/vam6</i> resembles human multisystemic disorders caused by aberrant trafficking of endosomal vesicles. Development (Cambridge), 2008, 135, 387-399.	1.2	48
20	Cohesin-dependent regulation of Runx genes. Development (Cambridge), 2007, 134, 2639-2649.	1.2	178
21	Radiation Hybrid Maps of Medaka Chromosomes LG 12, 17, and 22. DNA Research, 2007, 14, 135-140.	1.5	5
22	The zebrafish udu gene encodes a novel nuclear factor and is essential for primitive erythroid cell development. Blood, 2007, 110, 99-106.	0.6	34
23	The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during myofibrillogenesis. Developmental Biology, 2007, 308, 133-143.	0.9	105
24	Differential gene expression as a toxicant-sensitive endpoint in zebrafish embryos and larvae. Aquatic Toxicology, 2007, 81, 355-364.	1.9	112
25	Large-scale mapping of mutations affecting zebrafish development. BMC Genomics, 2007, 8, 11.	1.2	59
26	A gene-based radiation hybrid map of the gilthead sea bream Sparus aurata refines and exploits conserved synteny with Tetraodon nigroviridis. BMC Genomics, 2007, 8, 44.	1.2	52
27	The first radiation hybrid map of a perch-like fish: The gilthead seabream (Sparus aurata L). Genomics, 2006, 87, 793-800.	1.3	59
28	Learning from Small Fry: The Zebrafish as a Genetic Model Organism for Aquaculture Fish Species. Marine Biotechnology, 2006, 8, 329-345.	1.1	175
29	Histone deacetylase 1 is required for cell cycle exit and differentiation in the zebrafish retina. Developmental Dynamics, 2005, 233, 883-889.	0.8	62
30	Mutation in the δ-subunit of the nAChR suppresses the muscle defects caused by lack of Dystrophin. Developmental Dynamics, 2005, 234, 1016-1025.	0.8	25
31	The Zebrafish Mutants dre, uki, and lep Encode Negative Regulators of the Hedgehog Signaling Pathway. PLoS Genetics, 2005, 1, e19.	1.5	73
32	Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphel•neurones and cranial motoneurones. Development (Cambridge), 2005, 132, 645-658.	1.2	81
33	Gene expression profiling of gilthead sea bream during early development and detection of stress-related genes by the application of cDNA microarray technology. Physiological Genomics, 2005, 23, 182-191.	1.0	71
34	The Zebrafish shocked Gene Encodes a Glycine Transporter and Is Essential for the Function of Early Neural Circuits in the CNS. Journal of Neuroscience, 2005, 25, 6610-6620.	1.7	74
35	Zebrafish penner/lethal giant larvae 2 functions in hemidesmosome formation, maintenance of cellular morphology and growth regulation in the developing basal epidermis. Development (Cambridge), 2005, 132, 3255-3265.	1.2	91
36	Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection. Molecular Immunology, 2005, 42, 1185-1203.	1.0	129

ROBERT GEISLER

#	Article	IF	CITATIONS
37	Integrinα5 and Delta/Notch Signaling Have Complementary Spatiotemporal Requirements during Zebrafish Somitogenesis. Developmental Cell, 2005, 8, 575-586.	3.1	135
38	A mutation in the silver gene leads to defects in melanosome biogenesis and alterations in the visual system in the zebrafish mutant fading vision. Developmental Biology, 2005, 284, 421-436.	0.9	103
39	beamter/deltaC and the role of Notch ligands in the zebrafish somite segmentation, hindbrain neurogenesis and hypochord differentiation. Developmental Biology, 2005, 286, 391-404.	0.9	135
40	Comparative analysis and characterization of expressed sequence tags in gilthead sea bream (Sparus) Tj ETQq0	0 0 rgBT /0 1.9	Dverlock 10 T
41	iguana encodes a novel zinc-finger protein with coiled-coil domains essential for Hedgehog signal transduction in the zebrafish embryo. Genes and Development, 2004, 18, 1565-1576.	2.7	99
42	Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature, 2004, 428, 955-959.	13.7	317
43	Mutated otopetrin 1 affects the genesis of otoliths and the localization of Starmaker in zebrafish. Development Genes and Evolution, 2004, 214, 582-590.	0.4	71
44	Axon Sorting in the Optic Tract Requires HSPG Synthesis by ext2 (dackel) and extl3 (boxer). Neuron, 2004, 44, 947-960.	3.8	153
45	Bacterial Artificial Chromosome (BAC) Clones and the Current Clone Map of the Zebrafish Genome. Methods in Cell Biology, 2004, 77, 295-304.	0.5	4
46	Retinal function and morphology in two zebrafish models of oculo-renal syndromes. European Journal of Neuroscience, 2003, 18, 1377-1386.	1.2	21
47	A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature, 2003, 421, 279-282.	13.7	384
48	The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans. Development (Cambridge), 2003, 130, 5043-5052.	1.2	198
49	lockjaw encodes a zebrafish tfap2a required for early neural crest development. Development (Cambridge), 2003, 130, 5755-5768.	1.2	190
50	Heparan Sulfate 6-O-Sulfotransferase Is Essential for Muscle Development in Zebrafish. Journal of Biological Chemistry, 2003, 278, 31118-31127.	1.6	79
51	Retinoic acid signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the anterior-posterior axis of the CNS and to induce a pectoral fin bud. Development (Cambridge), 2002, 129, 2851-2865.	1.2	259
52	<i>parachute</i> / <i>n-cadherin</i> is required for morphogenesis and maintained integrity of the zebrafish neural tube. Development (Cambridge), 2002, 129, 3281-3294.	1.2	205
53	<i>her1</i> and the <i>notch</i> pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development (Cambridge), 2002, 129, 1175-1183.	1.2	229
54	A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes and Development, 2001, 15, 1427-1434.	2.7	242

ROBERT GEISLER

#	Article	IF	CITATIONS
55	Zebrafish <i>colourless</i> encodes <i>sox10</i> and specifies non-ectomesenchymal neural crest fates. Development (Cambridge), 2001, 128, 4113-4125.	1.2	449
56	Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature, 2000, 405, 76-81.	13.7	919
57	Conservation of <i>Mhc</i> Class III Region Synteny Between Zebrafish and Human as Determined by Radiation Hybrid Mapping. Journal of Immunology, 2000, 165, 6984-6993.	0.4	31
58	Control of <i>her1</i> expression during zebrafish somitogenesis by a <i>Delta</i> -dependent oscillator and an independent wave-front activity. Genes and Development, 2000, 14, 1678-1690.	2.7	296
59	A radiation hybrid map of the zebrafish genome. Nature Genetics, 1999, 23, 86-89.	9.4	259
60	Maternal and embryonic expression of zebrafish lef1. Mechanisms of Development, 1999, 86, 147-150.	1.7	53
61	A gradient of cytoplasmic Cactus degradation establishes the nuclear localization gradient of the dorsal morphogen in Drosophila. Mechanisms of Development, 1996, 60, 109-123.	1.7	107
62	cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the lκB gene family of vertebrates. Cell, 1992, 71, 613-621.	13.5	254