Zhijun Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4267500/zhijun-li-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

7,895 82 215 52 h-index g-index citations papers 6.94 246 10,109 5.7 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
215	Sensing and Navigation of Wearable Assistance Cognitive Systems for the Visually Impaired. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2022 , 1-1	3	1
214	Optimal Probabilistic Motion Planning with Potential Infeasible LTL Constraints. <i>IEEE Transactions on Automatic Control</i> , 2022 , 1-1	5.9	0
213	Assimilation Control of a Robotic Exoskeleton for Physical Human-Robot Interaction. <i>IEEE Robotics and Automation Letters</i> , 2022 , 7, 2977-2984	4.2	O
212	Dual-Loop Dynamic Control of Cable-Driven Parallel Robots Without Online Tension Distribution. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2022 , 1-14	7.3	1
211	Integrated Task Sensing and Whole Body Control for Mobile Manipulation With Series Elastic Actuators. <i>IEEE Transactions on Automation Science and Engineering</i> , 2022 , 1-12	4.9	O
210	Fuzzy Enhanced Adaptive Admittance Control of a Wearable Walking Exoskeleton with Step Trajectory Shaping. <i>IEEE Transactions on Fuzzy Systems</i> , 2022 , 1-1	8.3	1
209	Whole-Body Fuzzy Based Impedance Control of a Humanoid Wheeled Robot. <i>IEEE Robotics and Automation Letters</i> , 2022 , 7, 4909-4916	4.2	O
208	Human-in-the-Loop Control of Soft Exosuits Using Impedance Learning on Different Terrains. <i>IEEE Transactions on Robotics</i> , 2022 , 1-10	6.5	8
207	Neuromorphic Vision-Based Fall Localization in Event Streams With Temporal-Spatial Attention Weighted Network <i>IEEE Transactions on Cybernetics</i> , 2022 , PP,	10.2	2
206	NeuroGrasp: Multi-modal Neural Network with Euler Region Regression for Neuromorphic Vision-based Grasp Pose Estimation. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2022 , 1-1	5.2	2
205	Wearable Robots for Human Underwater Movement Ability Enhancement: A Survey. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2022 , 9, 967-977	7	5
204	MoNet: Motion-Based Point Cloud Prediction Network. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-11	6.1	O
203	Stackelberg Game-oriented Optimal Control for Bounded Constrained Mechanical Systems: A Fuzzy Evidence Theoretic Approach. <i>IEEE Transactions on Fuzzy Systems</i> , 2021 , 1-1	8.3	1
202	Asymmetric Cooperation Control of Dual-Arm Exoskeletons Using Human Collaborative Manipulation Models. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	2
201	Spatiotemporal Graph Convolution Multifusion Network for Urban Vehicle Emission Prediction. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 3342-3354	10.3	8
200	Whole-Body Control of an Autonomous Mobile Manipulator Using Series Elastic Actuators. <i>IEEE/ASME Transactions on Mechatronics</i> , 2021 , 26, 657-667	5.5	9
199	A Novel Illumination-Robust Hand Gesture Recognition System With Event-Based Neuromorphic Vision Sensor. <i>IEEE Transactions on Automation Science and Engineering</i> , 2021 , 18, 508-520	4.9	6

(2021-2021)

198	Guest Editorial Focused Section on Mechatronics in Unmanned Systems. <i>IEEE/ASME Transactions on Mechatronics</i> , 2021 , 26, 595-599	5.5	
197	Trajectory prediction of cyclist based on dynamic Bayesian network and long short-term memory model at unsignalized intersections. <i>Science China Information Sciences</i> , 2021 , 64, 1	3.4	16
196	Robust Vehicle Detection in High-Resolution Aerial Images With Imbalanced Data. <i>IEEE Transactions on Artificial Intelligence</i> , 2021 , 2, 238-250	4.7	1
195	Multi-Sensor Guided Hand Gesture Recognition for a Teleoperated Robot Using a Recurrent Neural Network. <i>IEEE Robotics and Automation Letters</i> , 2021 , 6, 6039-6045	4.2	35
194	Learning-Based Probabilistic LTL Motion Planning With Environment and Motion Uncertainties. <i>IEEE Transactions on Automatic Control</i> , 2021 , 66, 2386-2392	5.9	8
193	High-Precision Trajectory Tracking Control of Cable-Driven Parallel Robots Using Robust Synchronization. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 17, 2488-2499	11.9	5
192	. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021 , 51, 2624-2634	7.3	16
191	Skill Learning Strategy Based on Dynamic Motion Primitives for Human R obot Cooperative Manipulation. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2021 , 13, 105-117	3	9
190	. IEEE Transactions on Automation Science and Engineering, 2021 , 18, 564-573	4.9	13
189	2021 , 5, 1279-1284		6
189	2021, 5, 1279-1284 Multiobjective Scheduling Strategy With Genetic Algorithm and Time-Enhanced A* Planning for Autonomous Parking Robotics in High-Density Unmanned Parking Lots. <i>IEEE/ASME Transactions on Mechatronics</i> , 2021, 26, 1547-1557	5.5	4
	Multiobjective Scheduling Strategy With Genetic Algorithm and Time-Enhanced A* Planning for Autonomous Parking Robotics in High-Density Unmanned Parking Lots. <i>IEEE/ASME Transactions on</i>	5·5 7·3	
188	Multiobjective Scheduling Strategy With Genetic Algorithm and Time-Enhanced A* Planning for Autonomous Parking Robotics in High-Density Unmanned Parking Lots. <i>IEEE/ASME Transactions on Mechatronics</i> , 2021 , 26, 1547-1557 Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using		4
188	Multiobjective Scheduling Strategy With Genetic Algorithm and Time-Enhanced A* Planning for Autonomous Parking Robotics in High-Density Unmanned Parking Lots. <i>IEEE/ASME Transactions on Mechatronics</i> , 2021 , 26, 1547-1557 Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using Neural Networks. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2021 , 51, 3282-3292 EEG-Based Volitional Control of Prosthetic Legs for Walking in Different Terrains. <i>IEEE Transactions</i>	7.3	4 59
188 187 186	Multiobjective Scheduling Strategy With Genetic Algorithm and Time-Enhanced A* Planning for Autonomous Parking Robotics in High-Density Unmanned Parking Lots. <i>IEEE/ASME Transactions on Mechatronics</i> , 2021 , 26, 1547-1557 Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using Neural Networks. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2021 , 51, 3282-3292 EEG-Based Volitional Control of Prosthetic Legs for Walking in Different Terrains. <i>IEEE Transactions on Automation Science and Engineering</i> , 2021 , 18, 530-540	7·3 4·9	4 59 12
188 187 186	Multiobjective Scheduling Strategy With Genetic Algorithm and Time-Enhanced A* Planning for Autonomous Parking Robotics in High-Density Unmanned Parking Lots. <i>IEEE/ASME Transactions on Mechatronics</i> , 2021 , 26, 1547-1557 Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using Neural Networks. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2021 , 51, 3282-3292 EEG-Based Volitional Control of Prosthetic Legs for Walking in Different Terrains. <i>IEEE Transactions on Automation Science and Engineering</i> , 2021 , 18, 530-540 . <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2021 , 13, 57-66 Human-Robot Cooperation Control Based on Trajectory Deformation Algorithm for a Lower Limb	7·3 4·9	4 59 12
188 187 186 185	Multiobjective Scheduling Strategy With Genetic Algorithm and Time-Enhanced A* Planning for Autonomous Parking Robotics in High-Density Unmanned Parking Lots. <i>IEEE/ASME Transactions on Mechatronics</i> , 2021, 26, 1547-1557 Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using Neural Networks. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2021, 51, 3282-3292 EEG-Based Volitional Control of Prosthetic Legs for Walking in Different Terrains. <i>IEEE Transactions on Automation Science and Engineering</i> , 2021, 18, 530-540 . <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2021, 13, 57-66 Human-Robot Cooperation Control Based on Trajectory Deformation Algorithm for a Lower Limb Rehabilitation Robot. <i>IEEE/ASME Transactions on Mechatronics</i> , 2021, 1-1 Muscle Synergy-based Planning and Neural-adaptive Control for a Prosthetic Arm. <i>IEEE Transactions</i>	7·3 4·9 3 5·5	4 59 12 5

180	Neural-Dynamics Optimization and Repetitive Learning Control for Robotic Leg Prostheses. IEEE/ASME Transactions on Mechatronics, 2021, 1-1	5.5	0
179	KAM-Net: Keypoint-Aware and Keypoint-Matching Network for Vehicle Detection from 2D Point Cloud. <i>IEEE Transactions on Artificial Intelligence</i> , 2021 , 1-1	4.7	4
178	. IEEE Transactions on Artificial Intelligence, 2021 , 1-1	4.7	7
177	Development and Continuous Control of an Intelligent Upper-Limb Neuroprosthesis for Reach and Grasp Motions Using Biological Signals. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2021 , 1-11	7.3	1
176	Pole-Curb Fusion based Robust and Efficient Autonomous Vehicle Localization System with Branch-and-Bound Global Optimization and Local Grid Map Method. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 1-1	6.8	4
175	Lifting Triplet Energy and Bipolar Characteristics by Limiting the Rotation of the Peripheral Groups in Host Materials to Achieve High-Efficiency Blue OLED <i>Chemistry - an Asian Journal</i> , 2021 , e20210129	8 ^{4.5}	
174	Deep Learning Method for Grasping Novel Objects Using Dexterous Hands. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	2
173	Biologically Inspired Deadbeat Control of Robotic Leg Prostheses. <i>IEEE/ASME Transactions on Mechatronics</i> , 2020 , 25, 2733-2742	5.5	7
172	Visual Regulation of Differential-Drive Mobile Robots: A Nonadaptive Switching Approach. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2020 , 1-11	7.3	1
171	Adaptive Proxy-Based Robust Control Integrated With Nonlinear Disturbance Observer for Pneumatic Muscle Actuators. <i>IEEE/ASME Transactions on Mechatronics</i> , 2020 , 25, 1756-1764	5.5	12
170	Adaptive Fuzzy-Region-Based Control of Euler[lagrange Systems With Kinematically Singular Configurations. <i>IEEE Transactions on Fuzzy Systems</i> , 2020 , 1-1	8.3	5
169	Reinforcement Learning Control of a Flexible Two-Link Manipulator: An Experimental Investigation. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2020 , 1-11	7.3	66
168	Synergy-Based Control of Assistive Lower-Limb Exoskeletons by Skill Transfer. <i>IEEE/ASME Transactions on Mechatronics</i> , 2020 , 25, 705-715	5.5	16
167	Bioinspired Embodiment for Intelligent Sensing and Dexterity in Fine Manipulation: A Survey. <i>IEEE Transactions on Industrial Informatics</i> , 2020 , 16, 4308-4321	11.9	5
166	Skill transfer learning for autonomous robots and humanEobot cooperation: A survey. <i>Robotics and Autonomous Systems</i> , 2020 , 128, 103515	3.5	26
165	. IEEE Transactions on Automation Science and Engineering, 2020 , 17, 1937-1949	4.9	87
164	Human-In-the-Loop Control of a Wearable Lower Limb Exoskeleton for Stable Dynamic Walking. IEEE/ASME Transactions on Mechatronics, 2020, 1-1	5.5	14
163	Cooperative Manipulation of Wearable Dual-Arm Exoskeletons Using Force Communication Between Partners. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 6629-6638	8.9	15

(2020-2020)

Cone-beam breast CT features associated with HER2/neu overexpression in patients with primary breast cancer. <i>European Radiology</i> , 2020 , 30, 2731-2739	8	4	
An Improved ACO Algorithm Optimized Fuzzy PID Controller for Load Frequency Control in Multi Area Interconnected Power Systems. <i>IEEE Access</i> , 2020 , 8, 6429-6447	3.5	37	
A Survey of the Four Pillars for Small Object Detection: Multiscale Representation, Contextual Information, Super-Resolution, and Region Proposal. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2020 , 1-18	7.3	24	
Robotic Grasping of Unknown Objects Using Novel Multilevel Convolutional Neural Networks: From Parallel Gripper to Dexterous Hand. <i>IEEE Transactions on Automation Science and Engineering</i> , 2020 , 1-1	12 ^{4.9}	5	
Special Issue on Neuro-Robotics: From Brain Machine Interfaces to Rehabilitation Robotics. <i>Advanced Robotics</i> , 2020 , 34, 975-975	1.7		
Coordinated Dynamic Control in the Task Space for Redundantly Actuated Cable-Driven Parallel Robots. <i>IEEE/ASME Transactions on Mechatronics</i> , 2020 , 1-1	5.5	7	
Motion Tracking Control Design for a Class of Nonholonomic Mobile Robot Systems. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2020 , 50, 2150-2156	7.3	21	
Human-Inspired Control of Dual-Arm Exoskeleton Robots With Force and Impedance Adaptation. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2020 , 50, 5296-5305	7.3	28	
Cooperative Manipulation for a Mobile Dual-Arm Robot Using Sequences of Dynamic Movement Primitives. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2020 , 12, 18-29	3	15	
A Learning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 112-125	10.2	32	
Human-Cooperative Control Design of a Walking Exoskeleton for Body Weight Support. <i>IEEE Transactions on Industrial Informatics</i> , 2020 , 16, 2985-2996	11.9	14	
Adaptive Time-Delay Balance Control of Biped Robots. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 2936-2944	8.9	9	
High-Order Disturbance-Observer-Based Sliding Mode Control for Mobile Wheeled Inverted Pendulum Systems. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 2030-2041	8.9	82	
Brain R obot Interface-Based Navigation Control of a Mobile Robot in Corridor Environments. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2020 , 50, 3047-3058	7.3	15	
Disturbance Observer-Based Neural Network Control of Cooperative Multiple Manipulators With Input Saturation. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2020 , 31, 1735-1746	10.3	53	
DMP-Based Motion Generation for a Walking Exoskeleton Robot Using Reinforcement Learning. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 3830-3839	8.9	14	
Robust Vision-Based Tube Model Predictive Control of Multiple Mobile Robots for Leader Follower Formation. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 3096-3106	8.9	26	
Adaptive Visual Regulation of Wheeled Mobile Robots: a Switching Approach. <i>Journal of Intelligent</i> and Robotic Systems: Theory and Applications, 2020 , 98, 345-358	2.9	5	
	An Improved ACO Algorithm Optimized Fuzzy PID Controller for Load Frequency Control in Multi Area Interconnected Power Systems. IEEE Access, 2020, 8, 6429-6447 A Survey of the Four Pillars for Small Object Detection: Multiscale Representation, Contextual Information, Super-Resolution, and Region Proposal. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 1-18 Robotic Grasping of Unknown Objects Using Novel Multilevel Convolutional Neural Networks: From Parallel Gripper to Dexterous Hand. IEEE Transactions on Automation Science and Engineering, 2020, 1-18 Special Issue on Neuro-Robotics: From Brain Machine Interfaces to Rehabilitation Robotics. Advanced Robotics, 2020, 34, 975-975 Coordinated Dynamic Control in the Task Space for Redundantly Actuated Cable-Driven Parallel Robots. IEEE/ASME Transactions on Mechatronics, 2020, 1-1 Motion Tracking Control Design for a Class of Nonholonomic Mobile Robot Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 2150-2156 Human-Inspired Control of Dual-Arm Exoskeleton Robots With Force and Impedance Adaptation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 5296-5305 Cooperative Manipulation for a Mobile Dual-Arm Robot Using Sequences of Dynamic Movement Primitives. IEEE Transactions on Cognitive and Developmental Systems, 2020, 12, 18-29 A Learning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation. IEEE Transactions on Cybernetics, 2020, 50, 112-125 Human-Cooperative Control Design of a Walking Exoskeleton for Body Weight Support. IEEE Transactions on Industrial Informatics, 2020, 16, 2985-2996 Adaptive Time-Delay Balance Control of Biped Robots. IEEE Transactions on Industrial Electronics, 2020, 67, 2936-2944 High-Order Disturbance-Observer-Based Sliding Mode Control for Mobile Wheeled Inverted Pendulum Systems, Man, and Cybernetics: Systems, 2020, 50, 3047-3058 Disturbance Observer-Based Neural Network Control of Abobte Robot in Corridor Envir	An Improved ACO Algorithm Optimized Fuzzy PID Controller for Load Frequency Control in Multi Area Interconnected Power Systems. IEEE Access, 2020, 8, 6429-6447 A Survey of the Four Pillars for Small Object Detection: Multicale Representation, Contextual Information, Super-Resolution, and Region Proposal. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 1-18 Robotic Grasping of Unknown Objects Using Novel Multilevel Convolutional Neural Networks: From Parallel Gripper to Dexterous Hand. IEEE Transactions on Automatian Science and Engineering, 2020, 1-12 ⁴⁻⁹ Special Issue on Neuro-Robotics: From Brain Machine Interfaces to Rehabilitation Robotics. Advanced Robotics, 2020, 34, 975-975 Coordinated Dynamic Control in the Task Space for Redundantly Actuated Cable-Driven Parallel Robots. IEEE/ASME Transactions on Mechatronics, 2020, 1-1 Motion Tracking Control Design for a Class of Nonholonomic Mobile Robot Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 2150-2156 Thuman-Inspired Control of Dual-Arm Exoskeleton Robots With Force and Impedance Adaptation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 5266-5305 A Learning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation for a Mobile Dual-Arm Robot Using Sequences of Dynamic Movement Primitives. IEEE Transactions on Cognitive and Developmental Systems, 2020, 12, 18-29 A Learning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation. IEEE Transactions on Cybernetics, 2020, 50, 112-125 Human-Cooperative Control Design of a Walking Exoskeleton for Body Weight Support. IEEE Transactions on Industrial Informatics, 2020, 16, 2985-2996 Adaptive Time-Delay Balance Control of Biped Robots. IEEE Transactions on Industrial Electronics, 2020, 67, 2030-2041 BrainBobot Interface-Based Navigation Control of Ambbile Robot in Corridor Environments. IEEE Transactions on Industrial Electronics, 2020, 67, 3030-	An Improved ACO Algorithm Optimized Fuzzy PID Controller for Load Frequency Control in Multi Area Interconnected Power Systems. IEEE Access, 2020, 8, 6429-6447 A Survey of the Four Pillars for Small Object Detection: Multiscale Representation, Contextual Information, Super-Resolution, and Region Proposal. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 1-118 Robotic Grasping of Unknown Objects Using Novel Multitlevel Convolutional Neural Networks: From Parallel Gripper to Dexterous Hand. IEEE Transactions on Automation Science and Engineering, 2020, 1-124-9 Special Issue on Neuro-Robotics: From Brain Machine Interfaces to Rehabilitation Robotics. Advanced Robotics, 2020, 34, 975-975 Coordinated Dynamic Control in the Task Space for Redundantly Actuated Cable-Driven Parallel Robotics, IEEE/ASME Transactions on Mechatronics, 2020, 1-1 Motion Tracking Control Design for a Class of Nonholonomic Mobile Robot Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 2150-2156 Thuman-Inspired Control of Dual-Arm Exoskeleton Robots With Force and Impedance Adaptation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 2150-2156 Cooperative Manipulation for a Mobile Dual-Arm Robot Using Sequences of Dynamic Movement Primitives. IEEE Transactions on Cognitive and Developmental Systems, 2020, 12, 18-29 ALearning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation. IEEE Transactions on Cybernetics, 2020, 50, 112-125 Human-Cooperative Control Design of a Walking Exoskeleton for Body Weight Support. IEEE Transactions on Industrial Informatics, 2020, 16, 2985-2996 High-Order Disturbance-Observer-Based Sliding Mode Control for Mobile Wheeled Inverted Pendulum Systems. IEEE Transactions on Industrial Electronics, 2020, 67, 2030-2041 High-Order Disturbance-Observer-Based Neural Networks and Learning Systems, 2020, 31, 1735-1746 DISTURBANCE OF Server-Based Neural Networks and Learning Systems, 2020, 31, 1735-1

144	Reference Trajectory Reshaping Optimization and Control of Robotic Exoskeletons for Human-Robot Co-Manipulation. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 3740-3751	10.2	28
143	Human-Cooperative Control of a Wearable Walking Exoskeleton for Enhancing Climbing Stair Activities. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 3086-3095	8.9	23
142	Mechanisms and Design of a Humanoid Robot for Two-handed Manipulation 2019,		1
141	Guest Editorial Special Issue on Bioinspired Embodiment for Intelligent Sensing and Dexterity in Fine Manipulation. <i>IEEE Transactions on Industrial Informatics</i> , 2019 , 15, 1141-1143	11.9	2
140	Development of a Human B obot Hybrid Intelligent System Based on Brain Teleoperation and Deep Learning SLAM. <i>IEEE Transactions on Automation Science and Engineering</i> , 2019 , 16, 1664-1674	4.9	15
139	Adaptive Fuzzy Control for Coordinated Multiple Robots With Constraint Using Impedance Learning. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 3052-3063	10.2	128
138	Asymmetric Bounded Neural Control for an Uncertain Robot by State Feedback and Output Feedback. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2019, 1-12	7.3	47
137	Combined Sensing, Cognition, Learning, and Control for Developing Future Neuro-Robotics Systems: A Survey. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2019 , 11, 148-161	3	7
136	Design and Adaptive Control for an Upper Limb Robotic Exoskeleton in Presence of Input Saturation. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2019 , 30, 97-108	10.3	68
135	Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2019 , 30, 777-787	10.3	140
134	Finite-Time Convergence Adaptive Fuzzy Control for Dual-Arm Robot With Unknown Kinematics and Dynamics. <i>IEEE Transactions on Fuzzy Systems</i> , 2019 , 27, 574-588	8.3	129
133	Neural Networks Enhanced Adaptive Admittance Control of Optimized Robot-Environment Interaction. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 2568-2579	10.2	93
132	Guest Editorial Neuro-Robotics Systems: Sensing, Cognition, Learning, and Control. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2019 , 11, 145-147	3	3
131	Hybrid Brain/Muscle Signals Powered Wearable Walking Exoskeleton Enhancing Motor Ability in Climbing Stairs Activity. <i>IEEE Transactions on Medical Robotics and Bionics</i> , 2019 , 1, 218-227	3.1	57
130	Brain Teleoperation Control of a Nonholonomic Mobile Robot Using Quadrupole Potential Function. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2019 , 11, 527-538	3	3
129	Brain©omputer Interface-Based Stochastic Navigation and Control of a Semiautonomous Mobile Robot in Indoor Environments. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2019 , 11, 129	9-341	11
128	Adaptive Control and Optimization of Mobile Manipulation Subject to Input Saturation and Switching Constraints. <i>IEEE Transactions on Automation Science and Engineering</i> , 2019 , 16, 1543-1555	4.9	16
127	Evolution Strategies Learning With Variable Impedance Control for Grasping Under Uncertainty. IEEE Transactions on Industrial Electronics, 2019, 66, 7788-7799	8.9	22

(2018-2019)

126	Model Predictive Tracking Control of Nonholonomic Mobile Robots With Coupled Input Constraints and Unknown Dynamics. <i>IEEE Transactions on Industrial Informatics</i> , 2019 , 15, 3196-3205	11.9	39
125	Motor-Imagery-Based Teleoperation of a Dual-Arm Robot Performing Manipulation Tasks. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2019 , 11, 414-424	3	26
124	Adaptive Neural Control of a Kinematically Redundant Exoskeleton Robot Using Brain-Machine Interfaces. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2019 , 30, 3558-3571	10.3	75
123	Adaptive Tracking Control of a Class of Constrained Euler Lagrange Systems by Factorization of Dynamic Mass Matrix. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 7831-7840	8.9	6
122	Brain-Actuated Control of Dual-Arm Robot Manipulation With Relative Motion. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2019 , 11, 51-62	3	13
121	Coordination Control of a Dual-Arm Exoskeleton Robot Using Human Impedance Transfer Skills. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2019 , 49, 954-963	7.3	25
120	Adaptive Parameter Estimation and Control Design for Robot Manipulators With Finite-Time Convergence. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 8112-8123	8.9	215
119	Adaptive Neural Network Control for Robotic Manipulators With Unknown Deadzone. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 2670-2682	10.2	49
118	Development of a fast transmission method for 3D point cloud. <i>Multimedia Tools and Applications</i> , 2018 , 77, 25369-25387	2.5	10
117	A DMPs-Based Framework for Robot Learning and Generalization of Humanlike Variable Impedance Skills. <i>IEEE/ASME Transactions on Mechatronics</i> , 2018 , 23, 1193-1203	5.5	83
116	Asymmetric Bimanual Control of Dual-Arm Exoskeletons for Human-Cooperative Manipulations. <i>IEEE Transactions on Robotics</i> , 2018 , 34, 264-271	6.5	116
115	Mind Control of a Robotic Arm With Visual Fusion Technology. <i>IEEE Transactions on Industrial Informatics</i> , 2018 , 14, 3822-3830	11.9	75
114	Introduction to the Special Issue on Human Cooperative Wearable Robotic Systems. <i>IEEE Robotics and Automation Letters</i> , 2018 , 3, 466-468	4.2	4
113	Neural-Dynamic Optimization-Based Model Predictive Control for Tracking and Formation of Nonholonomic Multirobot Systems. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2018 , 29, 6113-6122	10.3	46
112	Physical Human R obot Interaction of a Robotic Exoskeleton By Admittance Control. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 9614-9624	8.9	137
111	Neural Network Approximation Based Near-Optimal Motion Planning With Kinodynamic Constraints Using RRT. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 8718-8729	8.9	57
110	. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018 , 48, 733-742	7.3	32
109	Adaptive Neural-Network-Based Active Control of Regenerative Chatter in Micromilling. <i>IEEE Transactions on Automation Science and Engineering</i> , 2018 , 15, 628-640	4.9	11

108	. IEEE/ASME Transactions on Mechatronics, 2018 , 23, 121-131	5.5	90
107	Robust Tube-Based Predictive Control for Visual Servoing of Constrained Differential-Drive Mobile Robots. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 3437-3446	8.9	35
106	. IEEE Transactions on Automation Science and Engineering, 2018 , 15, 329-340	4.9	131
105	Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model. <i>Frontiers in Neurorobotics</i> , 2018 , 12, 16	3.4	40
104	A Teleoperated Shared Control Scheme for Mobile Robot Based sEMG 2018 ,		6
103	Brain Teleoperation of a Mobile Robot Using Deep Learning Technique 2018,		2
102	The development of a high-speed lower-limb robotic exoskeleton. <i>Science China Information Sciences</i> , 2018 , 62, 1	3.4	2
101	Teleoperation System for Omnidirectional Mobile Robot Based on Shared Control Scheme 2018,		1
100	A Novel Robot Teaching System Based on Mixed Reality 2018 ,		2
99	. IEEE Transactions on Cognitive and Developmental Systems, 2018 , 10, 1126-1132	3	6
98	Adaptive Impedance Control for an Upper Limb Robotic Exoskeleton Using Biological Signals. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 1664-1674	8.9	165
97	Disturbance Observer-Based Fuzzy Control of Uncertain MIMO Mechanical Systems With Input Nonlinearities and its Application to Robotic Exoskeleton. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 984-994	10.2	54
96	Adaptive Neural Control of Uncertain MIMO Nonlinear Systems With State and Input Constraints. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2017 , 28, 1318-1330	10.3	114
95	BrainMachine Interface and Visual Compressive Sensing-Based Teleoperation Control of an Exoskeleton Robot. <i>IEEE Transactions on Fuzzy Systems</i> , 2017 , 25, 58-69	8.3	57
94	Global adaptive tracking control of robot manipulators using neural networks with finite-time learning convergence. <i>International Journal of Control, Automation and Systems</i> , 2017 , 15, 1916-1924	2.9	35
93	A survey of human-centered intelligent robots: issues and challenges. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2017 , 4, 602-609	7	139
92	Adaptive Neural Network Based Variable Stiffness Control of Uncertain Robotic Systems Using Disturbance Observer. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 2236-2245	8.9	74
91	Visual Servoing of Constrained Mobile Robots Based on Model Predictive Control. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2017 , 47, 1428-1438	7.3	45

(2016-2017)

90	Teleoperation Control Based on Combination of Wave Variable and Neural Networks. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2017 , 47, 2125-2136	7.3	226
89	Neural Control of Bimanual Robots With Guaranteed Global Stability and Motion Precision. <i>IEEE Transactions on Industrial Informatics</i> , 2017 , 13, 1162-1171	11.9	264
88	BrainMachine Interfacing-Based Teleoperation of Multiple Coordinated Mobile Robots. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 5161-5170	8.9	21
87	Human Cooperative Wheelchair With Brain Machine Interaction Based on Shared Control Strategy. <i>IEEE/ASME Transactions on Mechatronics</i> , 2017 , 22, 185-195	5.5	57
86	Robust Stabilization of a Wheeled Mobile Robot Using Model Predictive Control Based on Neurodynamics Optimization. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 505-516	8.9	77
85	Development of a human-friendly robot for socially aware human-robot interaction 2017,		4
84	Admittance control of a robotic exoskeleton for physical human robot interaction 2017,		2
83	Visual servoing of constrained differential-drive mobile robots using robust tube-based predictive control 2017 ,		1
82	Navigation and collision avoidance for nonholonomic robots using quadrupole potential function 2017 ,		1
81	Guest editorial for special issue on human-centered intelligent robots: issues and challenges. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2017 , 4, 599-601	7	2
80	Vision-Based Human Tracking Control of a Wheeled Inverted Pendulum Robot. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 2423-2434	10.2	47
79	Constrained Multilegged Robot System Modeling and Fuzzy Control With Uncertain Kinematics and Dynamics Incorporating Foot Force Optimization. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2016 , 46, 1-15	7.3	108
78	Adaptive control with a fuzzy tuner for cable-based rehabilitation robot. <i>International Journal of Control, Automation and Systems</i> , 2016 , 14, 865-875	2.9	34
77	Trajectory tracking control method and experiment of AGV 2016 ,		4
76	Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments. <i>Journal of Hazardous Materials</i> , 2016 , 318, 460-467	12.8	65
76 75		12.8	65
	optimization and column experiments. <i>Journal of Hazardous Materials</i> , 2016 , 318, 460-467	12.8	

7 ²	Development of a TouchX based teleoperation approach using wave variable technique 2016,		3
71	Adaptive impedance control of robotic exoskeletons using reinforcement learning 2016,		5
70	Development of a exoskeleton robot for lower limb rehabilitation 2016,		2
69	RGB-D sensor-based visual SLAM for localization and navigation of indoor mobile robot 2016 ,		15
68	Nonholonomic navigation and control of a wheeled chair 2016 ,		1
67	Dynamic Balance Optimization and Control of Quadruped Robot Systems With Flexible Joints. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2016 , 46, 1338-1351	7.3	30
66	Direct adaptive controller for uncertain MIMO dynamic systems with time-varying delay and dead-zone inputs. <i>Automatica</i> , 2016 , 63, 287-291	5.7	77
65	Trajectory-Tracking Control of Mobile Robot Systems Incorporating Neural-Dynamic Optimized Model Predictive Approach. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2016 , 46, 740-	749	223
64	Guest Editorial An Overview of Biomedical Robotics and Bio-Mechatronics Systems and Applications. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2016 , 46, 869-874	7.3	18
63	Development of a robotic teaching interface for human to human skill transfer 2016 ,		15
62	. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016 , 1-12	7.3	32
61	Optimal balancing control of bipedal robots using reinforcement learning 2016,		2
60	Development of a hybrid motion capture method using MYO armband with application to teleoperation 2016 ,		21
59	. IEEE Transactions on Industrial Electronics, 2015 , 62, 5763-5775	8.9	142
58	RGB-D sensor-based visual target detection and tracking for an intelligent wheelchair robot in indoors environments. <i>International Journal of Control, Automation and Systems</i> , 2015 , 13, 521-529	2.9	19
57	Neural-Dynamic-Method-Based Dual-Arm CMG Scheme With Time-Varying Constraints Applied to Humanoid Robots. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2015 , 26, 3251-62	10.3	96
56	Modification Strategies with Inorganic Acids for Efficient Photocatalysts by Promoting the Adsorption of O2. <i>ACS Applied Materials & Date of Strategies</i> , 2015 , 7, 22727-40	9.5	56
55	Mind guided motion control of robot manipulator using EEG signals 2015,		5

54	Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot. <i>IEEE Transactions on Control Systems Technology</i> , 2015 , 1-1	4.8	47
53	Quantized feedback stabilization of discrete-time linear system with Markovian jump packet losses. <i>Neurocomputing</i> , 2015 , 158, 307-314	5.4	6
52	Zero-dynamics-based adaptive sliding mode control for a wheeled inverted pendulum with parametric friction and uncertain dynamics compensation. <i>Transactions of the Institute of Measurement and Control</i> , 2015 , 37, 91-99	1.8	5
51	Fuzzy Approximation-Based Adaptive Backstepping Control of an Exoskeleton for Human Upper Limbs. <i>IEEE Transactions on Fuzzy Systems</i> , 2015 , 23, 555-566	8.3	146
50	Development of a physiological signals enhanced teleoperation strategy 2015 ,		3
49	Manipulation and grasping control for a hand-eye robot system using sensory-motor fusion 2015,		1
48	Brain-actuated teleoperation control of a mobile robot 2015,		2
47	Model Predictive Control of Nonholonomic Chained Systems Using General Projection Neural Networks Optimization. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2015 , 45, 1313-132	7·3	111
46	Development and Implementation of a Wheeled Inverted Pendulum Vehicle Using Adaptive Neural Control with Extreme Learning Machines. <i>Cognitive Computation</i> , 2015 , 7, 740-752	4.4	7
45	Hybrid motion/force control of biped robots considering force optimization 2015,		1
44	Adaptive neural network control for uncertain MIMO robotic systems with time-varying delay and unknown backlash-like hysteresis 2015 ,		4
43	Teleoperated robot writing using EMG signals 2015,		10
42	Stabilization of Markov Jump Linear Systems with Input Quantization. <i>Circuits, Systems, and Signal Processing</i> , 2015 , 34, 2109-2126	2.2	1
41	. IEEE Transactions on Fuzzy Systems, 2015 , 23, 1044-1056	8.3	63
40	Adaptive Fuzzy Control for Multilateral Cooperative Teleoperation of Multiple Robotic Manipulators Under Random Network-Induced Delays. <i>IEEE Transactions on Fuzzy Systems</i> , 2014 , 22, 437-450	8.3	135
39	Neural network-based motion control of an underactuated wheeled inverted pendulum model. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2014 , 25, 2004-16	10.3	197
38	sEMG-based joint force control for an upper-limb power-assist exoskeleton robot. <i>IEEE Journal of Biomedical and Health Informatics</i> , 2014 , 18, 1043-50	7.2	127
37	Contact-force distribution optimization and control for quadruped robots using both gradient and adaptive neural networks. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2014 , 25, 1460-73	10.3	68

36	Path-following control of wheeled planetary exploration robots moving on deformable rough terrain. <i>Scientific World Journal, The</i> , 2014 , 2014, 793526	2.2	6
35	Model predictive control for visual servo steering of nonholonomic mobile robots 2014,		1
34	Shared control of a brain-actuated intelligent wheelchair 2014 ,		14
33	Decentralised adaptive control of cooperating Robotic manipulators with disturbance observers. <i>IET Control Theory and Applications</i> , 2014 , 8, 515-521	2.5	33
32	Adaptive neural network control of bilateral teleoperation with unsymmetrical stochastic delays and unmodeled dynamics. <i>International Journal of Robust and Nonlinear Control</i> , 2014 , 24, 1628-1652	3.6	31
31	Development and Learning Control of a Human Limb With a Rehabilitation Exoskeleton. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 3776-3785	8.9	150
30	Development of multi-fingered dexterous hand for grasping manipulation. <i>Science China Information Sciences</i> , 2014 , 57, 1-10	3.4	10
29	Adaptive fuzzy-based motion generation and control of mobile under-actuated manipulators. <i>Engineering Applications of Artificial Intelligence</i> , 2014 , 30, 86-95	7.2	24
28	Adaptive sliding-mode control for two-wheeled inverted pendulum vehicle based on zero-dynamics theory. <i>Nonlinear Dynamics</i> , 2014 , 76, 459-471	5	31
27	Adaptive robust controls of biped robots. IET Control Theory and Applications, 2013, 7, 161-175	2.5	25
26	Boosting-based EMG patterns classification scheme for robustness enhancement. <i>IEEE Journal of Biomedical and Health Informatics</i> , 2013 , 17, 545-52	7.2	44
25	Hybrid brain/muscle-actuated control of an intelligent wheelchair 2013,		10
24	On motion optimization of robotic manipulators with strong nonlinear dynamic coupling using support area level set algorithm. <i>International Journal of Control, Automation and Systems</i> , 2013 , 11, 12	266:927	′5 ¹⁶
23	Bilateral Teleoperation of Holonomic Constrained Robotic Systems With Time-Varying Delays. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2013 , 62, 752-765	5.2	43
22	Trajectory Planning and Optimized Adaptive Control for a Class of Wheeled Inverted Pendulum Vehicle Models. <i>IEEE Transactions on Cybernetics</i> , 2013 , 43, 24-36	10.2	159
21	Robust Control of Motion/Force for Robotic Manipulators With Random Time Delays. <i>IEEE Transactions on Control Systems Technology</i> , 2013 , 21, 1708-1718	4.8	33
20	Trilateral Teleoperation of Adaptive Fuzzy Force/Motion Control for Nonlinear Teleoperators With Communication Random Delays. <i>IEEE Transactions on Fuzzy Systems</i> , 2013 , 21, 610-624	8.3	109
19	Enhanced visible photocatalytic activity of nanocrystalline	3.7	30

18	Decentralised adaptive fuzzy control of coordinated multiple mobile manipulators interacting with non-rigid environments. <i>IET Control Theory and Applications</i> , 2013 , 7, 397-410	2.5	62
17	Development of human-machine interface for teleoperation of a mobile manipulator. <i>International Journal of Control, Automation and Systems</i> , 2012 , 10, 1225-1231	2.9	16
16	Robust adaptive motion control for underwater remotely operated vehicles with velocity constraints. <i>International Journal of Control, Automation and Systems</i> , 2012 , 10, 421-429	2.9	45
15	Ceramic coatings of LA141 alloy formed by plasma electrolytic oxidation for corrosion protection. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	41
14	Adaptive Motion/Force Control of Mobile Under-Actuated Manipulators With Dynamics Uncertainties by Dynamic Coupling and Output Feedback. <i>IEEE Transactions on Control Systems Technology</i> , 2010 , 18, 1068-1079	4.8	37
13	Adaptive Dynamic Coupling Control of Hybrid Joints of Human-Symbiotic Wheeled Mobile Manipulators with Unmodelled Dynamics. <i>International Journal of Social Robotics</i> , 2010 , 2, 109-120	4	9
12	Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments. <i>Automatica</i> , 2010 , 46, 2028-2034	5.7	126
11	Adaptive fuzzy logic control of dynamic balance and motion for wheeled inverted pendulums. <i>Fuzzy Sets and Systems</i> , 2009 , 160, 1787-1803	3.7	74
10	Robust adaptive control of cooperating mobile manipulators with relative motion. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2009 , 39, 103-16		43
9	Adaptive Robust Dynamic Balance and Motion Controls of Mobile Wheeled Inverted Pendulums. <i>IEEE Transactions on Control Systems Technology</i> , 2009 , 17, 233-241	4.8	51
8	Adaptive neural-fuzzy control of uncertain constrained multiple coordinated nonholonomic mobile manipulators. <i>Engineering Applications of Artificial Intelligence</i> , 2008 , 21, 985-1000	7.2	41
7	Effects of alternate partial root-zone irrigation on soil microorganism and maize growth. <i>Plant and Soil</i> , 2008 , 302, 45-52	4.2	41
6	Robust adaptive control of coordinated multiple mobile manipulators. <i>Mechatronics</i> , 2008 , 18, 239-250	3	52
5	Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2007 , 37, 607-16		119
4	Robust motion/force control of nonholonomic mobile manipulators using hybrid joints. <i>Advanced Robotics</i> , 2007 , 21, 1231-1252	1.7	9
3	Robust Motion/Force Control of Holonomic Constrainted Nonholonomic Mobile Manipulators using Hybrid Joints 2006 ,		1
2	Intelligent compliant force/motion control of nonholonomic mobile manipulator working on the nonrigid surface. <i>Neural Computing and Applications</i> , 2006 , 15, 204-216	4.8	15
1	Motion control of nonholonomic mobile underactuated manipulator		1