Jay A Gupta

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4267178/jay-a-gupta-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28	5,335 citations	13	32
papers		h-index	g-index
32 ext. papers	5,964 ext. citations	11.2 avg, IF	4.93 L-index

#	Paper	IF	Citations
28	Scalable Synthesis of Monolayer Hexagonal Boron Nitride on Graphene with Giant Bandgap Renormalization <i>Advanced Materials</i> , 2022 , e2201387	24	5
27	Atomic-scale visualization of topological spin textures in the chiral magnet MnGe <i>Science</i> , 2021 , 374, 1484-1487	33.3	1
26	Synthesis, Magnetic Properties, and Electronic Structure of Magnetic Topological Insulator MnBiSe. <i>Nano Letters</i> , 2021 , 21, 5083-5090	11.5	6
25	Growth of the intrinsic superlattice material Bi4Se3 by DC magnetron sputtering: Layered to faceted growth. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2021 , 39, 063	412	0
24	Determining Surface Terminations and Chirality of Noncentrosymmetric FeGe Thin Films via Scanning Tunneling Microscopy. <i>ACS Applied Materials & Description of Materials & Description</i>	9.5	2
23	Chemical migration and dipole formation at van der Waals interfaces between magnetic transition metal chalcogenides and topological insulators. <i>Physical Review Materials</i> , 2020 , 4,	3.2	2
22	Perspectives on deterministic control of quantum point defects by scanned probes. <i>Nanophotonics</i> , 2019 , 8, 2033-2040	6.3	6
21	STM and DFT studies of CO2 adsorption on O-Cu(100) surface. Surface Science, 2019, 679, 50-55	1.8	6
20	Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit. <i>Nano Letters</i> , 2018 , 18, 3125-3131	11.5	353
19	Topological Dirac semimetal Na3Bi films in the ultrathin limit via alternating layer molecular beam epitaxy. <i>APL Materials</i> , 2018 , 6, 086103	5.7	3
18	Crystalline hydrogenation of graphene by scanning tunneling microscope tip-induced field dissociation of H2. <i>Carbon</i> , 2017 , 124, 97-104	10.4	11
17	Uniform large-area growth of nanotemplated high-quality monolayer MoS2. <i>Applied Physics Letters</i> , 2017 , 110, 263103	3.4	6
16	PHYSICS. Painting magnetism on a canvas of graphene. <i>Science</i> , 2016 , 352, 415-6	33.3	19
15	Influence of the local environment on Mn acceptors in GaAs. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 154202	1.8	4
14	Building blocks for studies of nanoscale magnetism: adsorbates on ultrathin insulating Cu2N. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 394009	1.8	7
13	Atomic-scale engineering of the electrostatic landscape of semiconductor surfaces. <i>Nano Letters</i> , 2013 , 13, 2418-22	11.5	14
12	Progress, challenges, and opportunities in two-dimensional materials beyond graphene. <i>ACS Nano</i> , 2013 , 7, 2898-926	16.7	3414

LIST OF PUBLICATIONS

11	Tuning the electronic states of individual Co acceptors in GaAs. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2013 , 31, 04D102	1.3	2
10	Tunable control over the ionization state of single Mn acceptors in GaAs with defect-induced band bending. <i>Nano Letters</i> , 2011 , 11, 2004-7	11.5	29
9	Tunable field control over the binding energy of single dopants by a charged vacancy in GaAs. <i>Science</i> , 2010 , 330, 1807-10	33.3	66
8	A single molecule Kondo switch: multistability of tetracyanoethylene on Cu(111). <i>Nano Letters</i> , 2010 , 10, 4175-80	11.5	69
7	Tunneling spectroscopy of ultrathin insulating films: CuN on Cu(100). <i>Applied Physics Letters</i> , 2007 , 91, 253106	3.4	43
6	Single-atom spin-flip spectroscopy. <i>Science</i> , 2004 , 306, 466-9	33.3	542
5	Optical, electrical and magnetic manipulation of spins in semiconductors. <i>Semiconductor Science and Technology</i> , 2002 , 17, 275-284	1.8	53
4	Molecule cascades. <i>Science</i> , 2002 , 298, 1381-7	33.3	399
3	Ultrafast manipulation of electron spin coherence. <i>Science</i> , 2001 , 292, 2458-61	33.3	222
2	Optical spectroscopy of IIIVI (magnetic) semiconductor quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 1998 , 2, 854-857	3	9
1	Zero-dimensional excitonic confinement in locally strained Zn1⊠CdxSe quantum wells. <i>Applied Physics Letters</i> , 1997 , 71, 1213-1215	3.4	42