
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/42670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Vivo Sublayer Analysis of Human Retinal Inner Plexiform Layer Obtained by Visible-Light Optical Coherence Tomography. , 2022, 63, 18.		17
2	Monolithic dual-wedge prism-based spectroscopic single-molecule localization microscopy. Nanophotonics, 2022, 11, 1527-1535.	2.9	9
3	High-Speed Balanced-Detection Visible-Light Optical Coherence Tomography in the Human Retina Using Subpixel Spectrometer Calibration. IEEE Transactions on Medical Imaging, 2022, 41, 1724-1734.	5.4	7
4	Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms. , 2022, 63, 12.		20
5	Long-term retinal protection by MEK inhibition in Pax6 haploinsufficiency mice. Experimental Eye Research, 2022, 218, 109012.	1.2	5
6	High-speed balanced detection visible-light optical coherence tomography in the human retina. , 2022, , .		1
7	Neutrophil Recruitment Correlates to Microvascular Flow Changes in Ischemic Stroke Demonstrated with Visible-light Optical Coherence Tomography. , 2022, , .		0
8	A standardized crush tool to produce consistent retinal ganglion cell damage in mice. Neural Regeneration Research, 2021, 16, 1442.	1.6	1
9	Accelerating 3D single-molecule localization microscopy using blind sparse inpainting. Journal of Biomedical Optics, 2021, 26, .	1.4	4
10	Investigating Single-Molecule Fluorescence Spectral Heterogeneity of Rhodamines Using High-Throughput Single-Molecule Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 3914-3921.	2.1	12
11	Improving spatial precision and field-of-view in wavelength-tagged single-particle tracking using spectroscopic single-molecule localization microscopy. Applied Optics, 2021, 60, 3647.	0.9	5
12	Super-resolution imaging of flat-mounted whole mouse cornea. Experimental Eye Research, 2021, 205, 108499.	1.2	4
13	In vivo imaging of the inner retinal layer structure in mice after eye-opening using visible-light optical coherence tomography. Experimental Eye Research, 2021, 211, 108756.	1.2	8
14	Global and Regional Damages in Retinal Ganglion Cell Axon Bundles Monitored Non-Invasively by Visible-Light Optical Coherence Tomography Fibergraphy. Journal of Neuroscience, 2021, 41, 10179-10193.	1.7	8
15	Intrinsic spectrally-dependent background in spectroscopic visible-light optical coherence tomography. Biomedical Optics Express, 2021, 12, 110.	1.5	6
16	RainbowSTORM: an open-source ImageJ plug-in for spectroscopic single-molecule localization microscopy (sSMLM) data analysis and image reconstruction. Bioinformatics, 2020, 36, 4972-4974.	1.8	6
17	Visible-Light Optical Coherence Tomography Fibergraphy for Quantitative Imaging of Retinal Ganglion Cell Axon Bundles. Translational Vision Science and Technology, 2020, 9, 11.	1.1	14
18	Subâ€10 nm Distance Measurements between Fluorophores using Photonâ€Accumulation Enhanced Reconstruction. Advanced Photonics Research, 2020, 1, 2000038.	1.7	4

#	Article	IF	CITATIONS
19	Symmetrically dispersed spectroscopic single-molecule localization microscopy. Light: Science and Applications, 2020, 9, 92.	7.7	26
20	In Vivo Imaging of Schlemm's Canal and Limbal Vascular Network in Mouse Using Visible-Light OCT. , 2020, 61, 23.		23
21	Super-Resolution Imaging of Self-Assembled Nanocarriers Using Quantitative Spectroscopic Analysis for Cluster Extraction. Langmuir, 2020, 36, 2291-2299.	1.6	13
22	Accelerating multicolor spectroscopic single-molecule localization microscopy using deep learning. Biomedical Optics Express, 2020, 11, 2705.	1.5	26
23	Spectrally dependent roll-off in visible-light optical coherence tomography. Optics Letters, 2020, 45, 2680.	1.7	15
24	Tunicamycin-induced photoreceptor atrophy precedes degeneration of retinal capillaries with minimal effects on retinal ganglion and pigment epithelium cells. Experimental Eye Research, 2019, 187, 107756.	1.2	9
25	High-Throughput Single-Molecule Spectroscopy Resolves the Conformational Isomers of BODIPY Chromophores. Journal of Physical Chemistry Letters, 2019, 10, 6807-6812.	2.1	13
26	Disposable ultrasound-sensing chronic cranial window by soft nanoimprinting lithography. Nature Communications, 2019, 10, 4277.	5.8	52
27	Designing visible-light optical coherence tomography towards clinics. Quantitative Imaging in Medicine and Surgery, 2019, 9, 769-781.	1.1	18
28	Increased stiffness and flow resistance of the inner wall of Schlemm's canal in glaucomatous human eyes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26555-26563.	3.3	70
29	Speckle reduction in visible-light optical coherence tomography using scan modulation. Neurophotonics, 2019, 6, 1.	1.7	24
30	Distinct pathological signatures in human cellular models of myotonic dystrophy subtypes. JCI Insight, 2019, 4, .	2.3	25
31	Multicolor super-resolution imaging using spectroscopic single-molecule localization microscopy with optimal spectral dispersion. Applied Optics, 2019, 58, 2248.	0.9	35
32	Longitudinal deep-brain imaging in mouse using visible-light optical coherence tomography through chronic microprism cranial window. Biomedical Optics Express, 2019, 10, 5235.	1.5	24
33	Machine-learning based spectral classification for spectroscopic single-molecule localization microscopy. Optics Letters, 2019, 44, 5864.	1.7	14
34	Three-dimensional biplane spectroscopic single-molecule localization microscopy. Optica, 2019, 6, 709.	4.8	28
35	Visible-light optical coherence tomography investigation into vasculature changes following microprism implantation. , 2019, , .		0
36	Targeted deletion of Cyp1b1 in pericytes results in attenuation of retinal neovascularization and trabecular meshwork dysgenesis. Trends in Developmental Biology, 2019, 12, 1-12.	1.0	5

#	Article	IF	CITATIONS
37	<i>In vivo</i> blindâ€deconvolution photoacoustic ophthalmoscopy with total variation regularization. Journal of Biophotonics, 2018, 11, e201700360.	1.1	9
38	<italic>In Vivo</italic> Superresolution Imaging of Neuronal Structure in the Mouse Brain. IEEE Transactions on Biomedical Engineering, 2018, 65, 232-238.	2.5	17
39	Highâ€5peed 3D Printing of Millimeterâ€5ize Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness. Advanced Materials, 2018, 30, e1705683.	11.1	98
40	Monitoring Acute Stroke in Mouse Model Using Laser Speckle Imaging-Guided Visible-Light Optical Coherence Tomography. IEEE Transactions on Biomedical Engineering, 2018, 65, 2136-2142.	2.5	24
41	Imaging neuronal structure dynamics using 2â€photon superâ€resolution patterned excitation reconstruction microscopy. Journal of Biophotonics, 2018, 11, e201700171.	1.1	6
42	Theoretical analysis of spectral precision in spectroscopic single-molecule localization microscopy. Review of Scientific Instruments, 2018, 89, 123703.	0.6	26
43	Far-Red Photoactivatable BODIPYs for the Super-Resolution Imaging of Live Cells. Journal of the American Chemical Society, 2018, 140, 12741-12745.	6.6	71
44	Spectroscopic analysis beyond the diffraction limit. International Journal of Biochemistry and Cell Biology, 2018, 101, 113-117.	1.2	4
45	Method to identify and minimize artifacts induced by fluorescent impurities in single-molecule localization microscopy. Journal of Biomedical Optics, 2018, 23, 1.	1.4	11
46	Visible-light optical coherence tomography oximetry based on circumpapillary scan and graph-search segmentation. Biomedical Optics Express, 2018, 9, 3640.	1.5	14
47	Patterned-illumination second harmonic generation microscopy of collagen fibrils in rat scleras. Optics Letters, 2018, 43, 5190.	1.7	4
48	Sub-10-nm imaging of nucleic acids using spectroscopic intrinsic-contrast photon-localization optical nanoscopy (SICLON). Optics Letters, 2018, 43, 5817.	1.7	2
49	Retinal oxygen: from animals to humans. Progress in Retinal and Eye Research, 2017, 58, 115-151.	7.3	170
50	Theoretical model for optical oximetry at the capillary level: exploring hemoglobin oxygen saturation through backscattering of single red blood cells. Journal of Biomedical Optics, 2017, 22, 025002.	1.4	24
51	Colposcopic imaging using visible-light optical coherence tomography. Journal of Biomedical Optics, 2017, 22, 056003.	1.4	9
52	Bayer Filter Snapshot Hyperspectral Fundus Camera for Human Retinal Imaging. Current Eye Research, 2017, 42, 629-635.	0.7	22
53	OCT angiography and visible-light OCT in diabetic retinopathy. Vision Research, 2017, 139, 191-203.	0.7	54
54	Imaging hemodynamic response after distal middle cerebral artery occlusion with combined laser speckle imaging and visible-light optical coherence tomography. , 2017, , .		0

4

#	Article	IF	CITATIONS
55	Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6147-E6156.	3.3	102
56	Parallel Three-Dimensional Tracking of Quantum Rods Using Polarization-Sensitive Spectroscopic Photon Localization Microscopy. ACS Photonics, 2017, 4, 1747-1752.	3.2	20
57	Optical Detection of Ultrasound in Photoacoustic Imaging. IEEE Transactions on Biomedical Engineering, 2017, 64, 4-15.	2.5	121
58	Snapshot hyperspectral retinal imaging using compact spectral resolving detector array. Journal of Biophotonics, 2017, 10, 830-839.	1.1	26
59	A Cooperative Copper Metal–Organic Frameworkâ€Hydrogel System Improves Wound Healing in Diabetes. Advanced Functional Materials, 2017, 27, 1604872.	7.8	280
60	Quantifying melanin concentration in retinal pigment epithelium using broadband photoacoustic microscopy. Biomedical Optics Express, 2017, 8, 2851.	1.5	35
61	Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation. Biomedical Optics Express, 2017, 8, 3571.	1.5	24
62	Stochastic fluorescence switching of nucleic acids under visible light illumination. Optics Express, 2017, 25, 7929.	1.7	5
63	Blind sparse inpainting reveals cytoskeletal filaments with sub-Nyquist localization. Optica, 2017, 4, 1277.	4.8	14
64	Retinal oximetry in humans using visible-light optical coherence tomography [Invited]. Biomedical Optics Express, 2017, 8, 1415.	1.5	52
65	Foxc1 and Foxc2 in the Neural Crest Are Required for Ocular Anterior Segment Development. , 2017, 58, 1368.		62
66	Sustaining Intravitreal Residence With L-Arginine Peptide-Conjugated Nanocarriers. , 2017, 58, 5142.		12
67	Increased Retinal Oxygen Metabolism Precedes Microvascular Alterations in Type 1 Diabetic Mice. , 2017, 58, 981.		27
68	Spectroscopic Doppler analysis for visible-light optical coherence tomography. Journal of Biomedical Optics, 2017, 22, 1.	1.4	6
69	Visible-light optical coherence tomography: a review. Journal of Biomedical Optics, 2017, 22, 1.	1.4	111
70	Monitoring Mouse Cerebral Circulation Oxygenation after Ischemic Stroke Using Visible-Light Optical Coherence Tomography. , 2017, , .		0
71	Optical Detection of Early Damage in Retinal Ganglion Cells in a Mouse Model of Partial Optic Nerve Crush Injury. , 2016, 57, 5665.		25
72	Visible-Light Optical Coherence Tomography Angiography for Monitoring Laser-Induced Choroidal Neovascularization in Mice. , 2016, 57, OCT86.		25

#	Article	IF	CITATIONS
73	Long-Term Protection of Retinal Ganglion Cells and Visual Function by Brain-Derived Neurotrophic Factor in Mice With Ocular Hypertension. , 2016, 57, 3793.		43
74	Super-resolution spectroscopic microscopy via photon localization. Nature Communications, 2016, 7, 12290.	5.8	91
75	Real-time Functional Analysis of Inertial Microfluidic Devices via Spectral Domain Optical Coherence Tomography. Scientific Reports, 2016, 6, 33250.	1.6	8
76	Special issue introduction: Photoacoustic microscopy. Photoacoustics, 2016, 4, 81-82.	4.4	4
77	Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes. Journal of Controlled Release, 2016, 238, 114-122.	4.8	105
78	Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography. Biomedical Optics Express, 2016, 7, 3377.	1.5	35
79	Superresolution intrinsic fluorescence imaging of chromatin utilizing native, unmodified nucleic acids for contrast. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9716-9721.	3.3	56
80	Subsurface Super-resolution Imaging of Unstained Polymer Nanostructures. Scientific Reports, 2016, 6, 28156.	1.6	31
81	Gigahertz All-Optical Modulation Using Reconfigurable Nanophotonic Metamolecules. Nano Letters, 2016, 16, 7690-7695.	4.5	14
82	Fabricating customized hydrogel contact lens. Scientific Reports, 2016, 6, 34905.	1.6	56
83	Single all-fiber-based nanosecond-pulsed supercontinuum source for multispectral photoacoustic microscopy and optical coherence tomography. Optics Letters, 2016, 41, 2743.	1.7	30
84	Photoacoustic imaging of the eye: A mini review. Photoacoustics, 2016, 4, 112-123.	4.4	107
85	Dual-band optical coherence tomography using a single supercontinuum laser source. Journal of Biomedical Optics, 2016, 21, 066013.	1.4	25
86	Imaging cortical hemodynamics using visible-light optical coherence tomography. , 2016, , .		0
87	Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model. Scientific Reports, 2015, 5, 16752.	1.6	32
88	Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length. Medical Physics, 2015, 42, 5356-5362.	1.6	9
89	Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy. Biomedical Optics Express, 2015, 6, 3701.	1.5	66
90	Simultaneous optical coherence tomography angiography and fluorescein angiography in rodents with normal retina and laser-induced choroidal neovascularization. Optics Letters, 2015, 40, 5782.	1.7	24

#	Article	IF	CITATIONS
91	Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation. Light: Science and Applications, 2015, 4, e334-e334.	7.7	133
92	Investigating the influence of chromatic aberration and optical illumination bandwidth on fundus imaging in rats. Journal of Biomedical Optics, 2015, 20, 106010.	1.4	8
93	Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy. Journal of Biomedical Optics, 2015, 20, 106005.	1.4	20
94	Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection. Optica, 2015, 2, 169.	4.8	79
95	Progressive Degeneration of Retinal and Superior Collicular Functions in Mice With Sustained Ocular Hypertension. , 2015, 56, 1971.		65
96	Super-resolution two-photon microscopy via scanning patterned illumination. Physical Review E, 2015, 91, 042703.	0.8	33
97	Measuring oxygen saturation in retinal and choroidal circulations in rats using visible light optical coherence tomography angiography. Biomedical Optics Express, 2015, 6, 2840.	1.5	50
98	Optical coherence photoacoustic microscopy for in vivo multimodal retinal imaging. Optics Letters, 2015, 40, 1370.	1.7	48
99	Monte Carlo Investigation of Optical Coherence Tomography Retinal Oximetry. IEEE Transactions on Biomedical Engineering, 2015, 62, 2308-2315.	2.5	25
100	Quantitative Image Analysis of Mesoscale Biofilm Structure with Optical Coherence Tomography. Proceedings of the Water Environment Federation, 2015, 2015, 4736-4745.	0.0	2
101	Imaging endocervical mucus anatomy and dynamics in macaque female reproductive track using optical coherence tomography. Quantitative Imaging in Medicine and Surgery, 2015, 5, 40-5.	1.1	3
102	Measuring absolute microvascular blood flow in cortex using visible-light optical coherence tomography. , 2014, 2014, 3881-4.		3
103	Visible light optical coherence tomography to quantify retinal blood oxygenation. , 2014, , .		0
104	In vivo functional microangiography by visible-light optical coherence tomography. Biomedical Optics Express, 2014, 5, 3603.	1.5	53
105	Introduction to the BIOMED 2014 feature issue. Biomedical Optics Express, 2014, 5, 4144.	1.5	0
106	Directly measuring absolute flow speed by frequency-domain laser speckle imaging. Optics Express, 2014, 22, 21079.	1.7	22
107	Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications. Optics Letters, 2014, 39, 4372.	1.7	80
108	Noninvasive in vivo imaging of oxygen metabolic rate in the retina. , 2014, 2014, 3865-8.		7

7

#	Article	IF	CITATIONS
109	Investigating femtosecond-laser-induced two-photon photoacoustic generation. Journal of Biomedical Optics, 2014, 19, 085001.	1.4	9
110	Theoretical and experimental studies of distance dependent response of micro-ring resonator-based ultrasonic detectors for photoacoustic microscopy. Journal of Applied Physics, 2014, 116, 144501.	1.1	15
111	In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy. Photoacoustics, 2014, 2, 81-86.	4.4	44
112	A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography. Scientific Reports, 2014, 4, 6525.	1.6	106
113	A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Scientific Reports, 2014, 4, 4496.	1.6	158
114	In vivo photoacoustic chorioretinal vascular imaging in albino mouse. Chinese Optics Letters, 2014, 12, 051704-51707.	1.3	4
115	Optical micro-ring resonator based ultrasonic detector for multimodal photoacoustic microscopy. , 2014, , .		Ο
116	Visible light optical coherence tomography for retinal oximetry. , 2014, , .		1
117	Photoacoustic microscopy: current situation and new ultrasonic detectors. , 2014, , .		Ο
118	A video-guided multimodal photoacoustic microscopy for retinal imaging. , 2014, , .		0
119	Multimodal photoacoustic ophthalmoscopy in mouse. Journal of Biophotonics, 2013, 6, 505-512.	1.1	21
120	Effect of Contact Lens on Optical Coherence Tomography Imaging of Rodent Retina. Current Eye Research, 2013, 38, 1235-1240.	0.7	20
121	Integrated Photoacoustic Ophthalmoscopy and Spectral-domain Optical Coherence Tomography. Journal of Visualized Experiments, 2013, , e4390.	0.2	20
122	Accuracy of retinal oximetry: a Monte Carlo investigation. Journal of Biomedical Optics, 2013, 18, 066003.	1.4	30
123	Automatic retinal vessel segmentation based on active contours method in Doppler spectral-domain optical coherence tomography. Journal of Biomedical Optics, 2013, 18, 016002.	1.4	7
124	Fundus Camera Guided Photoacoustic Ophthalmoscopy. Current Eye Research, 2013, 38, 1229-1234.	0.7	23
125	Laser-scanning Doppler photoacoustic microscopy based on temporal correlation. Applied Physics Letters, 2013, 102, 203501.	1.5	16
126	Visible-light optical coherence tomography for retinal oximetry. Optics Letters, 2013, 38, 1796.	1.7	151

#	Article	IF	CITATIONS
127	Absolute Retinal Blood Flow Measurement With a Dual-Beam Doppler Optical Coherence Tomography. , 2013, 54, 7998.		57
128	Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source. Journal of Biomedical Optics, 2012, 17, 030502.	1.4	45
129	Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform. Journal of Biomedical Optics, 2012, 17, 061206.	1.4	89
130	Simultaneous in vivo imaging of melanin and lipofuscin in the retina with multimodal photoacoustic ophthalmoscopy. , 2012, , .		0
131	Near-infrared light photoacoustic ophthalmoscopy. Biomedical Optics Express, 2012, 3, 792.	1.5	24
132	Laser-scanning photoacoustic microscopy with ultrasonic phased array transducer. Biomedical Optics Express, 2012, 3, 2694.	1.5	13
133	Structured interference optical coherence tomography. Optics Letters, 2012, 37, 3048.	1.7	7
134	Chemically Specific Imaging Through Stimulated Raman Photoexcitation and Ultrasound Detection: Minireview. Australian Journal of Chemistry, 2012, 65, 260.	0.5	6
135	<i>In vivo</i> integrated photoacoustic ophthalmoscopy, optical coherence tomography, and scanning laser ophthalmoscopy for retinal imaging. , 2012, , .		0
136	Simultaneous in vivo imaging of dual molecular contrasts in the retina with multimodal photoacoustic ophthalmoscopy. , 2012, , .		0
137	Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen. Biomedical Optics Express, 2011, 2, 1359.	1.5	74
138	Introduction: feature issue on In Vivo Microcirculation Imaging. Biomedical Optics Express, 2011, 2, 1861.	1.5	7
139	Chemically-Specific Photoacoustic Imaging using Vibrational Raman Excitation. , 2011, , .		0
140	Image chorioretinal vasculature in albino rats using photoacoustic ophthalmoscopy. Journal of Modern Optics, 2011, 58, 1997-2001.	0.6	17
141	Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging. Journal of Biomedical Optics, 2011, 16, 080504.	1.4	40
142	Feasibility of detecting mineral content in turbid medium using stimulated Raman photoacoustic imaging. Proceedings of SPIE, 2011, , .	0.8	0
143	Photoacoustic Ophthalmoscopy for In Vivo Retinal Imaging: Current Status and Prospects. Ophthalmic Surgery Lasers and Imaging Retina, 2011, 42, S106-15.	0.4	40
144	PHOTOACOUSTIC GENERATION OF FOCUSED QUASI-UNIPOLAR PRESSURE PULSES. Journal of Innovative Optical Health Sciences, 2010, 03, 247-253.	0.5	4

#	Article	IF	CITATIONS
145	Real-time full-field photoacoustic imaging using an ultrasonic camera. Journal of Biomedical Optics, 2010, 15, 1.	1.4	7
146	In vitro testing of a protease-sensitive contrast agent for optoacoustic imaging. Journal of Biomedical Optics, 2010, 15, 021315.	1.4	7
147	Stimulated Raman photoacoustic imaging. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20335-20339.	3.3	66
148	Photoacoustic generation by multiple picosecond pulse excitation. Medical Physics, 2010, 37, 1518-1521.	1.6	45
149	Stimulated Raman Photoacoustic Imaging. , 2010, , .		Ο
150	Photoacoustic ophthalmoscopy for in vivo retinal imaging. Optics Express, 2010, 18, 3967.	1.7	251
151	Adaptive optics photoacoustic microscopy. Optics Express, 2010, 18, 21770.	1.7	18
152	Simultaneous dual molecular contrasts provided by the absorbed photons in photoacoustic microscopy. Optics Letters, 2010, 35, 4018.	1.7	24
153	Collecting back-reflected photons in photoacoustic microscopy. Optics Express, 2010, 18, 1278.	1.7	34
154	Saturation effect in functional photoacoustic imaging. Journal of Biomedical Optics, 2010, 15, 021317.	1.4	31
155	Naturally Combined Photoacoustic Microscopy and Optical Coherence Tomography for Simultaneous Multimodal Imaging. , 2010, , .		Ο
156	Stimulated Raman Photoacoustic Imaging. , 2010, , .		0
157	Multimodal Retinal Imaging. , 2010, , .		Ο
158	Random-illuminating Compressed-sensing Photoacoustic Imaging. , 2010, , .		0
159	System model for laser-scanning photoacoustic microscopy. , 2009, , .		Ο
160	Laser-scanning optical-resolution photoacoustic microscopy. , 2009, , .		4
161	Automatic algorithm for skin profile detection in photoacoustic microscopy. Journal of Biomedical Optics, 2009, 14, 024050.	1.4	25
162	Laser-scanning optical-resolution photoacoustic microscopy. Optics Letters, 2009, 34, 1771.	1.7	224

#	Article	IF	CITATIONS
163	Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography. Optics Letters, 2009, 34, 2961.	1.7	113
164	Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified Monte Carlo convolution method. Applied Optics, 2009, 48, 3204.	2.1	19
165	Stimulated Raman scattering: old physics, new applications. Journal of Modern Optics, 2009, 56, 1970-1973.	0.6	30
166	Monte Carlo simulation of light transport in dark-field confocal photoacoustic microscopy. , 2009, , .		0
167	Compressed-sensing Photoacoustic Imaging based on random optical illumination. International Journal of Functional Informatics and Personalised Medicine, 2009, 2, 394.	0.4	26
168	Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Optics Letters, 2008, 33, 929.	1.7	710
169	Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo. Proceedings of SPIE, 2008, , .	0.8	2
170	SIMULTANEOUS IMAGING OF A lacZ-MARKED TUMOR AND MICROVASCULATURE MORPHOLOGY <i>IN VIVO</i> BY DUAL-WAVELENGTH PHOTOACOUSTIC MICROSCOPY. Journal of Innovative Optical Health Sciences, 2008, 01, 207-215.	0.5	45
171	Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels. Physics in Medicine and Biology, 2007, 52, 1349-1361.	1.6	100
172	Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo. Inverse Problems, 2007, 23, S113-S122.	1.0	111
173	Imaging of hemoglobin oxygen saturation variations in single vesselsin vivousing photoacoustic microscopy. Applied Physics Letters, 2007, 90, 053901.	1.5	310
174	In vivo imaging of subcutaneous structures using functional photoacoustic microscopy. Nature Protocols, 2007, 2, 797-804.	5.5	181
175	Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. Journal of Biomedical Optics, 2006, 11, 034032.	1.4	242
176	Improved in vivo photoacoustic microscopy based on a virtual-detector concept. Optics Letters, 2006, 31, 474.	1.7	167
177	In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy. Optics Express, 2006, 14, 9317.	1.7	121
178	Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature Biotechnology, 2006, 24, 848-851.	9.4	1,690
179	Imaging acute thermal burns by photoacoustic microscopy. Journal of Biomedical Optics, 2006, 11, 054033.	1.4	83