
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4266623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Leukemic IDH1 and IDH2 Mutations Result inÂa Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation. Cancer Cell, 2010, 18, 553-567.	16.8	2,328
2	The Common Feature of Leukemia-Associated IDH1 and IDH2 Mutations Is a Neomorphic Enzyme Activity Converting α-Ketoglutarate to 2-Hydroxyglutarate. Cancer Cell, 2010, 17, 225-234.	16.8	1,754
3	IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature, 2012, 483, 474-478.	27.8	1,693
4	Prognostic Relevance of Integrated Genetic Profiling in Acute Myeloid Leukemia. New England Journal of Medicine, 2012, 366, 1079-1089.	27.0	1,688
5	Clinical Effect of Point Mutations in Myelodysplastic Syndromes. New England Journal of Medicine, 2011, 364, 2496-2506.	27.0	1,444
6	Tet2 Loss Leads to Increased Hematopoietic Stem Cell Self-Renewal and Myeloid Transformation. Cancer Cell, 2011, 20, 11-24.	16.8	1,105
7	Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood, 2016, 127, 2672-2681.	1.4	1,040
8	EZH2 Is Required for Germinal Center Formation and Somatic EZH2 Mutations Promote Lymphoid Transformation. Cancer Cell, 2013, 23, 677-692.	16.8	706
9	Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nature Genetics, 2012, 44, 1179-1181.	21.4	692
10	Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood, 2009, 114, 144-147.	1.4	661
11	The role of mutations in epigenetic regulators in myeloid malignancies. Nature Reviews Cancer, 2012, 12, 599-612.	28.4	614
12	RNA splicing factors as oncoproteins and tumour suppressors. Nature Reviews Cancer, 2016, 16, 413-430.	28.4	549
13	Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression. Cell, 2017, 170, 1079-1095.e20.	28.9	522
14	ASXL1 Mutations Promote Myeloid Transformation through Loss of PRC2-Mediated Gene Repression. Cancer Cell, 2012, 22, 180-193.	16.8	504
15	Therapeutic targeting of splicing in cancer. Nature Medicine, 2016, 22, 976-986.	30.7	484
16	Consensus guidelines for the diagnosis and clinical management of Erdheim-Chester disease. Blood, 2014, 124, 483-492.	1.4	462
17	SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition. Cancer Cell, 2015, 27, 617-630.	16.8	449
18	BET inhibitor resistance emerges from leukaemia stem cells. Nature, 2015, 525, 538-542.	27.8	441

#	Article	IF	CITATIONS
19	Validation of a Prognostic Model and the Impact of Mutations in Patients With Lower-Risk Myelodysplastic Syndromes. Journal of Clinical Oncology, 2012, 30, 3376-3382.	1.6	419
20	BRAF Mutants Evade ERK-Dependent Feedback by Different Mechanisms that Determine Their Sensitivity to Pharmacologic Inhibition. Cancer Cell, 2015, 28, 370-383.	16.8	392
21	H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nature Medicine, 2018, 24, 497-504.	30.7	391
22	Diverse and Targetable Kinase Alterations Drive Histiocytic Neoplasms. Cancer Discovery, 2016, 6, 154-165.	9.4	372
23	Loss of the Tumor Suppressor BAP1 Causes Myeloid Transformation. Science, 2012, 337, 1541-1546.	12.6	355
24	A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature, 2011, 473, 230-233.	27.8	351
25	Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood, 2014, 123, e123-e133.	1.4	337
26	Heterodimeric JAK–STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature, 2012, 489, 155-159.	27.8	320
27	Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nature Medicine, 2016, 22, 672-678.	30.7	301
28	Loss of BAP1 function leads to EZH2-dependent transformation. Nature Medicine, 2015, 21, 1344-1349.	30.7	297
29	Targeting Mutant BRAF in Relapsed or Refractory Hairy-Cell Leukemia. New England Journal of Medicine, 2015, 373, 1733-1747.	27.0	281
30	Vemurafenib for <i>BRAF</i> V600–Mutant Erdheim-Chester Disease and Langerhans Cell Histiocytosis. JAMA Oncology, 2018, 4, 384.	7.1	280
31	Genetic Analysis of Transforming Events That Convert Chronic Myeloproliferative Neoplasms to Leukemias. Cancer Research, 2010, 70, 447-452.	0.9	279
32	Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. Journal of Experimental Medicine, 2013, 210, 2641-2659.	8.5	278
33	The Notch/Hes1 Pathway Sustains NF-κB Activation through CYLD Repression in T Cell Leukemia. Cancer Cell, 2010, 18, 268-281.	16.8	261
34	JAK–STAT Pathway Activation in Malignant and Nonmalignant Cells Contributes to MPN Pathogenesis and Therapeutic Response. Cancer Discovery, 2015, 5, 316-331.	9.4	252
35	Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood, 2016, 127, 3004-3014.	1.4	244
36	Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5401-10.	7.1	238

#	Article	IF	CITATIONS
37	Targeting an RNA-Binding Protein Network in Acute Myeloid Leukemia. Cancer Cell, 2019, 35, 369-384.e7.	16.8	238
38	DNA Hydroxymethylation Profiling Reveals that WT1 Mutations Result in Loss of TET2 Function in Acute Myeloid Leukemia. Cell Reports, 2014, 9, 1841-1855.	6.4	237
39	JAK2V617F-Mediated Phosphorylation of PRMT5 Downregulates Its Methyltransferase Activity and Promotes Myeloproliferation. Cancer Cell, 2011, 19, 283-294.	16.8	225
40	Progression of RAS-Mutant Leukemia during RAF Inhibitor Treatment. New England Journal of Medicine, 2012, 367, 2316-2321.	27.0	222
41	Efficacy of MEK inhibition in patients with histiocytic neoplasms. Nature, 2019, 567, 521-524.	27.8	222
42	Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood, 2013, 121, 3563-3572.	1.4	218
43	TET Family Proteins and Their Role in Stem Cell Differentiation and Transformation. Cell Stem Cell, 2011, 9, 193-204.	11.1	209
44	Somatic mutations and cell identity linked by Genotyping of Transcriptomes. Nature, 2019, 571, 355-360.	27.8	206
45	The Augmented R-Loop Is a Unifying Mechanism for Myelodysplastic Syndromes Induced by High-Risk Splicing Factor Mutations. Molecular Cell, 2018, 69, 412-425.e6.	9.7	203
46	Macrophages support pathological erythropoiesis in polycythemia vera and β-thalassemia. Nature Medicine, 2013, 19, 437-445.	30.7	202
47	EZH2 and BCL6 Cooperate to Assemble CBX8-BCOR Complex to Repress Bivalent Promoters, Mediate Germinal Center Formation and Lymphomagenesis. Cancer Cell, 2016, 30, 197-213.	16.8	200
48	Clinical and Pathologic Impact of Select Chromatin-modulating Tumor Suppressors in Clear Cell Renal Cell Carcinoma. European Urology, 2013, 63, 848-854.	1.9	198
49	Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood, 2016, 127, 2451-2459.	1.4	198
50	Recurrent RAS and PIK3CA mutations in Erdheim-Chester disease. Blood, 2014, 124, 3016-3019.	1.4	197
51	DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nature Medicine, 2016, 22, 1488-1495.	30.7	195
52	Consensus guidelines for the diagnosis and management of patients with classic hairy cell leukemia. Blood, 2017, 129, 553-560.	1.4	193
53	Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood, 2012, 119, 4480-4485.	1.4	189
54	Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon α-2a. Blood, 2013, 122, 893-901.	1.4	184

#	Article	IF	CITATIONS
55	Therapeutic Targeting of RNA Splicing Catalysis through Inhibition of Protein Arginine Methylation. Cancer Cell, 2019, 36, 194-209.e9.	16.8	184
56	Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia. Blood, 2013, 121, 4917-4924.	1.4	175
57	Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia. Nature, 2018, 561, 127-131.	27.8	172
58	Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood, 2017, 130, 410-423.	1.4	163
59	The clinical spectrum of Erdheim-Chester disease: an observational cohort study. Blood Advances, 2017, 1, 357-366.	5.2	163
60	Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature, 2019, 574, 432-436.	27.8	163
61	Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations. Cancer Cell, 2018, 34, 225-241.e8.	16.8	162
62	HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans. Journal of Clinical Investigation, 2010, 120, 3578-3593.	8.2	162
63	Histiocytoses: emerging neoplasia behind inflammation. Lancet Oncology, The, 2017, 18, e113-e125.	10.7	154
64	DNA methylation disruption reshapes the hematopoietic differentiation landscape. Nature Genetics, 2020, 52, 378-387.	21.4	154
65	Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. Journal of Clinical Investigation, 2015, 125, 1857-1872.	8.2	151
66	Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature, 2019, 574, 273-277.	27.8	149
67	Notch pathway activation targets AML-initiating cell homeostasis and differentiation. Journal of Experimental Medicine, 2013, 210, 301-319.	8.5	148
68	Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. Journal of Clinical Investigation, 2020, 130, 981-997.	8.2	146
69	A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature, 2017, 549, 389-393.	27.8	144
70	The Potential for Isocitrate Dehydrogenase Mutations to Produce 2-Hydroxyglutarate Depends on Allele Specificity and Subcellular Compartmentalization. Journal of Biological Chemistry, 2013, 288, 3804-3815.	3.4	141
71	Myelodysplastic syndromes are induced by histone methylationââ,¬â€œaltering ASXL1 mutations. Journal of Clinical Investigation, 2013, 123, 4627-4640.	8.2	140
72	GM-CSF–dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia. Blood, 2013, 121, 5068-5077.	1.4	137

#	Article	IF	CITATIONS
73	Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults. Blood, 2017, 130, 167-175.	1.4	136
74	Pharmacologic modulation of RNA splicing enhances anti-tumor immunity. Cell, 2021, 184, 4032-4047.e31.	28.9	131
75	Epigenetic Perturbations by Arg882-Mutated DNMT3A Potentiate Aberrant Stem Cell Gene-Expression Program and Acute Leukemia Development. Cancer Cell, 2016, 30, 92-107.	16.8	130
76	Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nature Medicine, 2015, 21, 1473-1480.	30.7	128
77	Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. ELife, 2015, 4, .	6.0	125
78	Metabolic Rewiring by Oncogenic BRAF V600E Links Ketogenesis Pathway to BRAF-MEK1 Signaling. Molecular Cell, 2015, 59, 345-358.	9.7	125
79	Activating mutations in CSF1R and additional receptor tyrosine kinases in histiocytic neoplasms. Nature Medicine, 2019, 25, 1839-1842.	30.7	122
80	A mathematical framework to determine the temporal sequence of somatic genetic events in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17604-17609.	7.1	119
81	Prospective Blinded Study of <i>BRAF</i> V600E Mutation Detection in Cell-Free DNA of Patients with Systemic Histiocytic Disorders. Cancer Discovery, 2015, 5, 64-71.	9.4	115
82	Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation. Journal of Experimental Medicine, 2018, 215, 1729-1747.	8.5	113
83	Robust patient-derived xenografts of MDS/MPN overlap syndromes capture the unique characteristics of CMML and JMML. Blood, 2017, 130, 397-407.	1.4	112
84	Regulation of c-Myc Ubiquitination Controls Chronic Myelogenous Leukemia Initiation and Progression. Cancer Cell, 2013, 23, 362-375.	16.8	111
85	Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nature Biotechnology, 2022, 40, 499-506.	17.5	110
86	Altered RNA Processing in Cancer Pathogenesis and Therapy. Cancer Discovery, 2019, 9, 1493-1510.	9.4	106
87	Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood, 2014, 124, 1445-1449.	1.4	105
88	Benefit of high-dose daunorubicin in AML induction extends across cytogenetic and molecular groups. Blood, 2016, 127, 1551-1558.	1.4	105
89	Antagonistic activities of the immunomodulator and PP2A-activating drug FTY720 (Fingolimod,) Tj ETQq1 1 0.78	4314 rgBT 1.4	/Overlock 1 104
90	Hematopoietic Stem Cell Origin of <i>BRAF</i> V600E Mutations in Hairy Cell Leukemia. Science Translational Medicine, 2014, 6, 238ra71.	12.4	102

6

#	Article	IF	CITATIONS
91	The histopathology of Erdheim–Chester disease: a comprehensive review of a molecularly characterized cohort. Modern Pathology, 2018, 31, 581-597.	5.5	102
92	KMT2C mediates the estrogen dependence of breast cancer through regulation of ERα enhancer function. Oncogene, 2018, 37, 4692-4710.	5.9	102
93	Clinical and molecular predictors of response and survival following venetoclax therapy in relapsed/refractory AML. Blood Advances, 2021, 5, 1552-1564.	5.2	102
94	Altered RNA Splicing by Mutant p53 Activates Oncogenic RAS Signaling in Pancreatic Cancer. Cancer Cell, 2020, 38, 198-211.e8.	16.8	99
95	Functional evidence for derivation of systemic histiocytic neoplasms from hematopoietic stem/progenitor cells. Blood, 2017, 130, 176-180.	1.4	98
96	High prevalence of myeloid neoplasms in adults with non–Langerhans cell histiocytosis. Blood, 2017, 130, 1007-1013.	1.4	98
97	Allele-Specific Mechanisms of Activation of MEK1 Mutants Determine Their Properties. Cancer Discovery, 2018, 8, 648-661.	9.4	97
98	Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis. Genes and Development, 2016, 30, 989-1001.	5.9	95
99	CD25 expression status improves prognostic risk classification in AML independent of established biomarkers: ECOG phase 3 trial, E1900. Blood, 2012, 120, 2297-2306.	1.4	92
100	Mechanisms of Resistance to Noncovalent Bruton's Tyrosine Kinase Inhibitors. New England Journal of Medicine, 2022, 386, 735-743.	27.0	87
101	Janus kinase-2 inhibition induces durable tolerance to alloantigen by human dendritic cell–stimulated T cells yet preserves immunity to recall antigen. Blood, 2011, 118, 5330-5339.	1.4	86
102	Genomic analysis of hairy cell leukemia identifies novel recurrent genetic alterations. Blood, 2017, 130, 1644-1648.	1.4	82
103	The ASXL–BAP1 axis: new factors in myelopoiesis, cancer and epigenetics. Leukemia, 2013, 27, 10-15.	7.2	78
104	Emerging concepts of epigenetic dysregulation in hematological malignancies. Nature Immunology, 2016, 17, 1016-1024.	14.5	77
105	Mutations in Epigenetic Modifiers in Myeloid Malignancies and the Prospect of Novel Epigenetic-Targeted Therapy. Advances in Hematology, 2012, 2012, 1-12.	1.0	73
106	Efficacy of Intermittent Combined RAF and MEK Inhibition in a Patient with Concurrent BRAF- and NRAS-Mutant Malignancies. Cancer Discovery, 2014, 4, 538-545.	9.4	73
107	Aberrant RNA Splicing in Cancer. Annual Review of Cancer Biology, 2019, 3, 167-185.	4.5	73
108	Mutations in the RNA Splicing Factor SF3B1 Promote Tumorigenesis through MYC Stabilization. Cancer Discovery, 2020, 10, 806-821.	9.4	73

#	Article	IF	CITATIONS
109	Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L-induced thrombocytosis and myelofibrosis. Blood, 2010, 115, 2919-2927.	1.4	72
110	Metabolism and the leukemic stem cell. Journal of Experimental Medicine, 2010, 207, 677-680.	8.5	70
111	D-2-hydroxyglutarate produced by mutant IDH2 causes cardiomyopathy and neurodegeneration in mice. Genes and Development, 2014, 28, 479-490.	5.9	70
112	Dysregulation and therapeutic targeting of RNA splicing in cancer. Nature Cancer, 2022, 3, 536-546.	13.2	65
113	Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL. Nature Communications, 2019, 10, 1874.	12.8	63
114	Minor intron retention drives clonal hematopoietic disorders and diverse cancer predisposition. Nature Genetics, 2021, 53, 707-718.	21.4	61
115	Altered Nuclear Export Signal Recognition as a Driver of Oncogenesis. Cancer Discovery, 2019, 9, 1452-1467.	9.4	60
116	Quantification of tumor-derived cell free DNA(cfDNA) by digital PCR (DigPCR) in cerebrospinal fluid of patients with BRAFV600 mutated malignancies. Oncotarget, 2016, 7, 85430-85436.	1.8	60
117	Impaired hematopoiesis and leukemia development in mice with a conditional knock-in allele of a mutant splicing factor gene <i>U2af1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10437-E10446.	7.1	59
118	Molecular classification improves risk assessment in adult <i>BCR-ABL1–</i> negative B-ALL. Blood, 2021, 138, 948-958.	1.4	59
119	Targeting histone acetylation dynamics and oncogenic transcription by catalytic P300/CBP inhibition. Molecular Cell, 2021, 81, 2183-2200.e13.	9.7	59
120	Sequential azacitidine plus lenalidomide combination for elderly patients with untreated acute myeloid leukemia. Haematologica, 2013, 98, 591-596.	3.5	58
121	SnapShot: Splicing Alterations in Cancer. Cell, 2020, 180, 208-208.e1.	28.9	58
122	Histiocytosis. Lancet, The, 2021, 398, 157-170.	13.7	58
123	Detection of an NRAS mutation in Erdheim-Chester disease. Blood, 2013, 122, 1089-1091.	1.4	57
124	ASXL2 is essential for haematopoiesis and acts as a haploinsufficient tumour suppressor in leukemia. Nature Communications, 2017, 8, 15429.	12.8	55
125	Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway. Nature Communications, 2021, 12, 1826.	12.8	54
126	Depletion of L3MBTL1 promotes the erythroid differentiation of human hematopoietic progenitor cells: possible role in 20qâ^' polycythemia vera. Blood, 2010, 116, 2812-2821.	1.4	51

#	Article	IF	CITATIONS
127	Selective Activity of the Histone Deacetylase Inhibitor AR-42 against Leukemia Stem Cells: A Novel Potential Strategy in Acute Myelogenous Leukemia. Molecular Cancer Therapeutics, 2014, 13, 1979-1990.	4.1	49
128	Epigenetic alterations in hematopoietic malignancies. International Journal of Hematology, 2012, 96, 413-427.	1.6	48
129	The Role of Additional Sex Combs-Like Proteins in Cancer. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026526.	6.2	48
130	Proposed criteria for response assessment in patients treated in clinical trials for myeloproliferative neoplasms in blast phase (MPN-BP): Formal recommendations from the post-myeloproliferative neoplasm acute myeloid leukemia consortium. Leukemia Research, 2012, 36, 1500-1504.	0.8	47
131	Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies. Journal of Clinical Investigation, 2018, 128, 3819-3825.	8.2	45
132	Genetics of the myeloproliferative neoplasms. Current Opinion in Hematology, 2011, 18, 117-123.	2.5	44
133	Clonal diversity predicts adverse outcome in chronic lymphocytic leukemia. Leukemia, 2019, 33, 390-402.	7.2	44
134	Recurrent SRSF2 mutations in MDS affect both splicing and NMD. Genes and Development, 2020, 34, 413-427.	5.9	44
135	Sex-Biased <i>ZRSR2</i> Mutations in Myeloid Malignancies Impair Plasmacytoid Dendritic Cell Activation and Apoptosis. Cancer Discovery, 2022, 12, 522-541.	9.4	44
136	Dissecting the Contributions of Cooperating Gene Mutations to Cancer Phenotypes and Drug Responses with Patient-Derived iPSCs. Stem Cell Reports, 2018, 10, 1610-1624.	4.8	43
137	Single-cell genomics reveals the genetic and molecular bases for escape from mutational epistasis in myeloid neoplasms. Blood, 2020, 136, 1477-1486.	1.4	43
138	Aberrant Epigenetic and Genetic Marks Are Seen in Myelodysplastic Leukocytes and Reveal Dock4 as a Candidate Pathogenic Gene on Chromosome 7q. Journal of Biological Chemistry, 2011, 286, 25211-25223.	3.4	41
139	HDL and Glut1 inhibition reverse a hypermetabolic state in mouse models of myeloproliferative disorders. Journal of Experimental Medicine, 2013, 210, 339-353.	8.5	41
140	Clinical Implications of Novel Mutations in Epigenetic Modifiers in AML. Hematology/Oncology Clinics of North America, 2011, 25, 1119-1133.	2.2	40
141	Single-agent dabrafenib for <i>BRAF</i> ^{V600E} -mutated histiocytosis. Haematologica, 2018, 103, e177-e180.	3.5	40
142	ZBTB1 Regulates Asparagine Synthesis and Leukemia Cell Response to L-Asparaginase. Cell Metabolism, 2020, 31, 852-861.e6.	16.2	40
143	Splicing factor mutations in hematologic malignancies. Blood, 2021, 138, 599-612.	1.4	40
144	Collaborating constitutive and somatic genetic events in myeloid malignancies: ASXL1 mutations in patients with germline GATA2 mutations. Haematologica, 2014, 99, 201-203.	3.5	39

#	Article	IF	CITATIONS
145	ASXL1 plays an important role in erythropoiesis. Scientific Reports, 2016, 6, 28789.	3.3	38
146	Cancer-Specific Splicing Changes and the Potential for Splicing-Derived Neoantigens. Cancer Cell, 2018, 34, 181-183.	16.8	38
147	Histiocytic neoplasms in the era of personalized genomic medicine. Current Opinion in Hematology, 2016, 23, 416-425.	2.5	37
148	Rational Targeting of Cooperating Layers of the Epigenome Yields Enhanced Therapeutic Efficacy against AML. Cancer Discovery, 2019, 9, 872-889.	9.4	36
149	Therapeutic Modulation of RNA Splicing in Malignant and Non-Malignant Disease. Trends in Molecular Medicine, 2021, 27, 643-659.	6.7	36
150	The Spliceosome as an Indicted Conspirator in Myeloid Malignancies. Cancer Cell, 2011, 20, 420-422.	16.8	35
151	Erdheim-Chester disease with concomitant Rosai-Dorfman like lesions: a distinct entity mainly driven by <i>MAP2K1</i> . Haematologica, 2020, 105, e5-e8.	3.5	34
152	Coordinated missplicing of TMEM14C and ABCB7 causes ring sideroblast formation in SF3B1-mutant myelodysplastic syndrome. Blood, 2022, 139, 2038-2049.	1.4	34
153	Histiocytosis and the nervous system: from diagnosis to targeted therapies. Neuro-Oncology, 2021, 23, 1433-1446.	1.2	33
154	Neurologic and oncologic features of Erdheim–Chester disease: a 30-patient series. Neuro-Oncology, 2020, 22, 979-992.	1.2	31
155	High frequency of clonal hematopoiesis in Erdheim-Chester disease. Blood, 2021, 137, 485-492.	1.4	30
156	Acute myeloid leukemia with translocation t(8;16) presents with features which mimic acute promyelocytic leukemia and is associated with poor prognosis. Leukemia Research, 2013, 37, 32-36.	0.8	29
157	Somatic alterations and dysregulation of epigenetic modifiers in cancers. Biochemical and Biophysical Research Communications, 2014, 455, 24-34.	2.1	29
158	Role of TET2 and ASXL1 Mutations in the Pathogenesis of Myeloproliferative Neoplasms. Hematology/Oncology Clinics of North America, 2012, 26, 1053-1064.	2.2	28
159	How do messenger RNA splicing alterations drive myelodysplasia?. Blood, 2017, 129, 2465-2470.	1.4	28
160	Molecular Pathways: Understanding and Targeting Mutant Spliceosomal Proteins. Clinical Cancer Research, 2017, 23, 336-341.	7.0	28
161	Germ cell tumors and associated hematologic malignancies evolve from a common shared precursor. Journal of Clinical Investigation, 2020, 130, 6668-6676.	8.2	28
162	MSI2 is required for maintaining activated myelodysplastic syndrome stem cells. Nature Communications, 2016, 7, 10739.	12.8	27

#	Article	IF	CITATIONS
163	ASXL1 mutations are associated with distinct epigenomic alterations that lead to sensitivity to venetoclax and azacytidine. Blood Cancer Journal, 2021, 11, 157.	6.2	27
164	H3B-8800, an Orally Bioavailable Modulator of the SF3b Complex, Shows Efficacy in Spliceosome-Mutant Myeloid Malignancies. Blood, 2016, 128, 966-966.	1.4	27
165	Treatment outcomes and secondary cancer incidence in young patients with hairy cell leukaemia. British Journal of Haematology, 2016, 175, 402-409.	2.5	26
166	Molecular Profiling of Tumor Tissue and Plasma Cell-Free DNA from Patients with Non-Langerhans Cell Histiocytosis. Molecular Cancer Therapeutics, 2019, 18, 1149-1157.	4.1	26
167	Interpreting new molecular genetics in myelodysplastic syndromes. Hematology American Society of Hematology Education Program, 2012, 2012, 56-64.	2.5	26
168	ETV6-ABL1-positive "chronic myeloid leukemia": clinical and molecular response to tyrosine kinase inhibition. Haematologica, 2011, 96, 342-343.	3.5	24
169	Modeling SF3B1 Mutations in Cancer: Advances, Challenges, and Opportunities. Cancer Cell, 2016, 30, 371-373.	16.8	24
170	Anakinra as efficacious therapy for 2 cases of intracranial Erdheim-Chester disease. Blood, 2016, 128, 1896-1898.	1.4	24
171	Splicing factor SF3B1K700E mutant dysregulates erythroid differentiation via aberrant alternative splicing of transcription factor TAL1. PLoS ONE, 2017, 12, e0175523.	2.5	24
172	ProteomeGenerator: A Framework for Comprehensive Proteomics Based on de Novo Transcriptome Assembly and High-Accuracy Peptide Mass Spectral Matching. Journal of Proteome Research, 2018, 17, 3681-3692.	3.7	24
173	<i>Asxl1</i> loss cooperates with oncogenic <i>Nras</i> in mice to reprogram the immune microenvironment and drive leukemic transformation. Blood, 2022, 139, 1066-1079.	1.4	24
174	Synthetic introns enable splicing factor mutation-dependent targeting of cancer cells. Nature Biotechnology, 2022, 40, 1103-1113.	17.5	24
175	Emerging therapeutic paradigms to target the dysregulated Janus kinase/signal transducer and activator of transcription pathway in hematological malignancies. Leukemia and Lymphoma, 2014, 55, 1968-1979.	1.3	23
176	Cytogenetic correlates of TET2 mutations in 199 patients with myeloproliferative neoplasms. American Journal of Hematology, 2010, 85, 81-83.	4.1	22
177	Mutant SF3B1 promotes AKT- and NF-κB–driven mammary tumorigenesis. Journal of Clinical Investigation, 2021, 131, .	8.2	22
178	2-Hydroxyglutarate in <i>IDH</i> mutant acute myeloid leukemia: predicting patient responses, minimal residual disease and correlations with methylcytosine and hydroxymethylcytosine levels. Leukemia and Lymphoma, 2013, 54, 408-410.	1.3	21
179	U2af1 is required for survival and function of hematopoietic stem/progenitor cells. Leukemia, 2021, 35, 2382-2398.	7.2	21
180	The mutational landscape of paroxysmal nocturnal hemoglobinuria revealed: new insights into clonal dominance. Journal of Clinical Investigation, 2014, 124, 4227-4230.	8.2	20

#	Article	IF	CITATIONS
181	Identification and Targeting of Kinase Alterations in Histiocytic Neoplasms. Hematology/Oncology Clinics of North America, 2017, 31, 705-719.	2.2	20
182	AXL Inhibition in Macrophages Stimulates Host-versus-Leukemia Immunity and Eradicates NaÃ⁻ve and Treatment-Resistant Leukemia. Cancer Discovery, 2021, 11, 2924-2943.	9.4	20
183	Structural basis of cytokine-mediated activation of ALK family receptors. Nature, 2021, 600, 143-147.	27.8	20
184	Diffuse reduction of cerebral grey matter volumes in Erdheim-Chester disease. Orphanet Journal of Rare Diseases, 2016, 11, 109.	2.7	19
185	Unlike <i>ASXL1</i> and <i>ASXL2</i> mutations, <i>ASXL3</i> mutations are rare events in acute myeloid leukemia with t(8;21). Leukemia and Lymphoma, 2016, 57, 199-200.	1.3	19
186	Musashi 2 influences chronic lymphocytic leukemia cell survival and growth making it a potential therapeutic target. Leukemia, 2021, 35, 1037-1052.	7.2	19
187	Translating recent advances in the pathogenesis of acute myeloid leukemia to the clinic. Genes and Development, 2022, 36, 259-277.	5.9	19
188	Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cells, Leading to Bohring-Opitz-like Syndrome in Mice. Stem Cell Reports, 2016, 6, 914-925.	4.8	18
189	ABCA1 Exerts Tumor-Suppressor Function in Myeloproliferative Neoplasms. Cell Reports, 2020, 30, 3397-3410.e5.	6.4	18
190	Leveraging Systematic Functional Analysis to Benchmark an <i>In Silico</i> Framework Distinguishes Driver from Passenger MEK Mutants in Cancer. Cancer Research, 2020, 80, 4233-4243.	0.9	18
191	A Novel Germline Variant in CSF3R Reduces N-Glycosylation and Exerts Potent Oncogenic Effects in Leukemia. Cancer Research, 2018, 78, 6762-6770.	0.9	17
192	A scale for patient-reported symptom assessment for patients with Erdheim-Chester disease. Blood Advances, 2019, 3, 934-938.	5.2	17
193	MAP-Kinase-Driven Hematopoietic Neoplasms: A Decade of Progress in the Molecular Age. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a034892.	6.2	17
194	Splicing factor mutations in MDS RARS and MDS/MPN-RS-T. International Journal of Hematology, 2017, 105, 720-731.	1.6	16
195	Novel activating BRAF fusion identifies a recurrent alternative mechanism for ERK activation in pediatric Langerhans cell histiocytosis. Pediatric Blood and Cancer, 2018, 65, e26699.	1.5	16
196	Somatic gene mutations expose cytoplasmic DNA to co-opt the cGAS/STING/NLRP3 axis in myelodysplastic syndromes. JCI Insight, 2022, 7, .	5.0	16
197	Recent Discoveries in Molecular Characterization of Acute Myeloid Leukemia. Current Hematologic Malignancy Reports, 2014, 9, 93-99.	2.3	15
198	The Effect of SF3B1 Mutation on the DNA Damage Response and Nonsense-Mediated mRNA Decay in Cancer. Frontiers in Oncology, 2020, 10, 609409.	2.8	15

#	Article	IF	CITATIONS
199	Melanoma and nonâ€melanoma skin cancers in hairy cell leukaemia: a Surveillance, Epidemiology and End Results population analysis and the 30â€year experience at Memorial Sloan Kettering Cancer Center. British Journal of Haematology, 2015, 171, 84-90.	2.5	14
200	Genetic basis for iMCD-TAFRO. Oncogene, 2020, 39, 3218-3225.	5.9	14
201	Interpreting new molecular genetics in myelodysplastic syndromes. Hematology American Society of Hematology Education Program, 2012, 2012, 56-64.	2.5	14
202	Safety and activity of selinexor in patients with myelodysplastic syndromes or oligoblastic acute myeloid leukaemia refractory to hypomethylating agents: a single-centre, single-arm, phase 2 trial. Lancet Haematology,the, 2020, 7, e566-e574.	4.6	13
203	Femoral Bone Marrow Aspiration in Live Mice. Journal of Visualized Experiments, 2014, , .	0.3	12
204	Muscarinic acetylcholine receptor regulates self-renewal of early erythroid progenitors. Science Translational Medicine, 2019, 11, .	12.4	12
205	Recent advances in the treatment of acute myeloid leukemia. F1000 Medicine Reports, 2010, 2, 55.	2.9	12
206	Focus on the epigenome in the myeloproliferative neoplasms. Hematology American Society of Hematology Education Program, 2013, 2013, 538-544.	2.5	11
207	The importance of subclonal genetic events in MDS. Blood, 2013, 122, 3550-3551.	1.4	11
208	Rare and private spliceosomal gene mutations drive partial, complete, and dual phenocopies of hotspot alterations. Blood, 2020, 135, 1032-1043.	1.4	11
209	EZH2 Mutations: Mutating the Epigenetic Machinery in Myeloid Malignancies. Cancer Cell, 2010, 18, 105-107.	16.8	10
210	Calreticulin mutant myeloproliferative neoplasms induce MHC-I skewing, which can be overcome by an optimized peptide cancer vaccine. Science Translational Medicine, 2022, 14, .	12.4	10
211	Importance of Genetics in the Clinical Management of Chronic Myelomonocytic Leukemia. Journal of Clinical Oncology, 2013, 31, 2374-2376.	1.6	9
212	Genetic drivers of vulnerability and resistance in relapsed acute lymphoblastic leukemia. Proceedings of the United States of America, 2016, 113, 11071-11073.	7.1	9
213	Therapeutic targeting of RNA splicing in myelodysplasia. Seminars in Hematology, 2017, 54, 167-173.	3.4	9
214	ARAF protein kinase activates RAS by antagonizing its binding to RASGAP NF1. Molecular Cell, 2022, 82, 2443-2457.e7.	9.7	9
215	First Line Chemo-Free Therapy with the BRAF Inhibitor Vemurafenib Combined with Obinutuzumab Is Effective in Patients with Hcl. Blood, 2019, 134, 3998-3998.	1.4	8
216	Molecular genetics of acute myeloid leukemia: clinical implications and opportunities for integrating genomics into clinical practice. Hematology, 2012, 17, s39-s42.	1.5	7

#	Article	IF	CITATIONS
217	Disordered Epigenetic Regulation in the Pathophysiology of Myeloproliferative Neoplasms. Current Hematologic Malignancy Reports, 2012, 7, 34-42.	2.3	7
218	Hairy cell leukemia. Current Opinion in Hematology, 2015, 22, 355-361.	2.5	7
219	Reply to "Uveal melanoma cells are resistant to EZH2 inhibition regardless of BAP1 status". Nature Medicine, 2016, 22, 578-579.	30.7	7
220	Dual BRAF/MEK blockade restores CNS responses in BRAF-mutant Erdheim–Chester disease patients following BRAF inhibitor monotherapy. Neuro-Oncology Advances, 2020, 2, vdaa024.	0.7	7
221	Current pre-clinical and clinical advances in the BCR-ABL1-positive and -negative chronic myeloproliferative neoplasms. Haematologica, 2014, 99, 797-801.	3.5	6
222	Novel insights into the biology and treatment of chronic myeloproliferative neoplasms. Leukemia and Lymphoma, 2015, 56, 1938-1948.	1.3	6
223	PTEN isoforms with dual and opposing function. Nature Cell Biology, 2019, 21, 1306-1308.	10.3	6
224	Synthetic Lethal Interactions of MDS-Associated Spliceosomal Gene Mutations Identifies the Basis for Their Mutual Exclusivity. Blood, 2016, 128, 961-961.	1.4	6
225	Activating p53 and Inhibiting Superenhancers to Cure Leukemia. Trends in Pharmacological Sciences, 2018, 39, 1002-1004.	8.7	5
226	Vemurafenib in Patients with Erdheim-Chester Disease (ECD) and Langerhans Cell Histiocytosis (LCH) Harboring BRAFV600 Mutations: A Cohort of the Histology-Independent VE-Basket Study. Blood, 2016, 128, 480-480.	1.4	5
227	Modulation of RNA Splicing Enhances Response to BCL2 Inhibition in Acute Myeloid Leukemia. Blood, 2021, 138, 507-507.	1.4	5
228	Contemporary insights into the pathogenesis and treatment of chronic myeloproliferative neoplasms. Leukemia and Lymphoma, 2016, 57, 1517-1526.	1.3	4
229	Editorial overview: Cancer genomics: RNA metabolism and translation in cancer pathogenesis and therapy. Current Opinion in Genetics and Development, 2018, 48, iv-vi.	3.3	4
230	Extramedullary acute myeloid leukemia presenting in young adults demonstrates sensitivity to high-dose anthracycline: a subset analysis from ECOG-ACRIN 1900. Haematologica, 2019, 104, e147-e150.	3.5	4
231	High-Throughput Mutational Profiling In AML: Mutational Analysis of the ECOG E1900 Trial. Blood, 2010, 116, 851-851.	1.4	4
232	Splicing-Mediated Antigen Escape from Immunotherapy for B-cell Malignancies. Blood Cancer Discovery, 2021, , .	5.0	4
233	Targeting mRNA Decapping in AML. Cancer Cell, 2018, 33, 339-341.	16.8	3
234	Promoting spliceosome assembly for therapeutic intent. Trends in Pharmacological Sciences, 2021, 42, 981-983.	8.7	3

#	Article	IF	CITATIONS
235	<i>BRAF</i> -mutant hematopoietic malignancies. Oncotarget, 2014, 5, 7980-7981.	1.8	3
236	Single-Cell Multi-Omics Defines the Cell-Type Specific Impact of SF3B1 Splicing Factor Mutations on Hematopoietic Differentiation in Human Clonal Hematopoiesis and Myelodysplastic Syndromes. Blood, 2021, 138, 145-145.	1.4	3
237	Translocation t(11;17) in de novo Myelodysplastic Syndrome Not Associated with Acute Myeloid or Acute Promyelocytic Leukemia. Acta Haematologica, 2013, 129, 48-54.	1.4	2
238	Splicing regulation in hematopoiesis. Current Opinion in Hematology, 2021, 28, 277-283.	2.5	2
239	Dynamics of Mutant Alleles in Patients with Advanced Essential Thrombocythemia (ET) or Polycythemia (PV) During Pegylated Interferon-Alfa-2A (PEG-IFN-α-2A; Pegasys) Therapy. Blood, 2011, 118, 281-281.	1.4	2
240	Identification Of Actionable Genomic Alterations In Hematologic Malignancies By a Clinical Next Generation Sequencing-Based Assay. Blood, 2013, 122, 230-230.	1.4	2
241	Isogenic iPSC Models of SRSF2-Mutant Myelodysplastic Syndrome Capture Disease Phenotypes, Splicing Defects and Drug Responses. Blood, 2016, 128, 962-962.	1.4	2
242	Integrated Molecular Analysis Identifies Replicative Stress As Sensitizer to Imetelstat Therapy in AML. Blood, 2017, 130, 798-798.	1.4	2
243	Partial loss of genes might open therapeutic window. ELife, 2017, 6, .	6.0	2
244	First Line Chemo-Free Therapy with the BRAF Inhibitor Vemurafenib Combined with Obinutuzumab Is Effective in Patients with Hcl. Blood, 2021, 138, 43-43.	1.4	2
245	FISHing for TET2: Utility of FISH for TET2 deletions detection in clinical samples. Leukemia Research, 2012, 36, 25-26.	0.8	1
246	Refining the prognostic importance of the diversity of <i>FLT3</i> internal tandem duplications. Leukemia and Lymphoma, 2013, 54, 3-4.	1.3	1
247	Oncogenic splicing regulated by phase separation. Nature Cell Biology, 2020, 22, 916-918.	10.3	1
248	Spliceosomal Disruption of the Non-Canonical SWI/SNF Chromatin Remodeling Complex in SF3B1 Mutant Leukemias. Blood, 2019, 134, 637-637.	1.4	1
249	Male-Biased Spliceosome Mutations in Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN) Impair pDC Activation and Apoptosis. Blood, 2020, 136, 13-14.	1.4	1
250	SRSF2-P95Hdelays Myelofibrosis Development through Altered JAK/STAT Signaling in JAK2-V617F Megakaryocytes. Blood, 2021, 138, 2544-2544.	1.4	1
251	Zanubrutinib, Obinutuzumab, and Venetoclax in Chronic Lymphocytic Leukemia: Early MRD Kinetics Define a High-Risk Patient Cohort with Delayed Bone Marrow Undetectable MRD and Earlier Post-Treatment MRD Recurrence. Blood, 2021, 138, 3753-3753.	1.4	1
252	High Throughput Single-Cell Simultaneous Genotyping and Chromatin Accessibility Reveals Genotype to Phenotype Relationship in Human Myeloproliferation. Blood, 2021, 138, 678-678.	1.4	1

#	Article	IF	CITATIONS
253	Venetoclax Therapy for Relapsed and Treatment Refractory AML: Clinical Outcomes and Molecular Predictors. Blood, 2020, 136, 47-48.	1.4	1
254	<i>ZRSR2</i> Mutation Induced Minor Intron Retention Drives MDS and Diverse Cancer Predisposition Via Aberrant Splicing of <i>LZTR1</i> . Blood, 2020, 136, 10-11.	1.4	1
255	Genetics of the Myeloproliferative Neoplasms. , 2011, , 39-68.		Ο
256	Modeling CBL activating mutations in vivo. Blood, 2017, 129, 2046-2048.	1.4	0
257	Stem Cell Model of Hematologic Diseases. , 2018, , 111-118.		0
258	BRAF in the cross-hairs. Expert Review of Hematology, 2019, 12, 183-193.	2.2	0
259	Hairy Cell Leukemia. , 2020, , 1872-1883.e5.		Ο
260	mRNA Export as a Novel Cancer-Specific Dependency. Cancer Discovery, 2021, 11, 2129-2131.	9.4	0
261	JAK2V617F-Mediated Phosphorylation of PRMT5 Down-Regulates Its Methyltransferase Activity and Promotes Myeloproliferation. Blood, 2010, 116, 794-794.	1.4	Ο
262	Conditional Deletion of Asxl1 Results in Myelodysplasia. Blood, 2012, 120, 308-308.	1.4	0
263	Removal of Macrophages From the Erythroid Niche Impairs Stress Erythropoiesis but Improves Pathophysiology of Polycythemia Vera and Beta-Thalassemia. Blood, 2012, 120, 81-81.	1.4	0
264	Oncogenic Mutations in <i>XPO1</i> Promote Lymphoid Transformation By Altering Nuclear/Cytoplasmic Localization of NFκB Signaling Intermediates. Blood, 2017, 130, 879-879.	1.4	0
265	Characterization of Ntrk fusions and Therapeutic Response to Ntrk Inhibition in Hematologic Malignancies. Blood, 2017, 130, 794-794.	1.4	Ο
266	Aberrant RNA Splicing Contributes to the Pathogenesis of EVI-Rearranged Myeloid Leukemias. Blood, 2019, 134, 917-917.	1.4	0
267	Impaired RAS Proteolysis Drives Clonal Hematopoietic Transformation. Blood, 2021, 138, 356-356.	1.4	0