
Lu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4266494/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature-assisted rapid nucleation: a facile method to optimize the film morphology for perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 20327-20333.	10.3	148
2	Mesoporous BaSnO ₃ layer based perovskite solar cells. Chemical Communications, 2016, 52, 970-973.	4.1	132
3	Nanoporous TiO2 spheres with tailored textural properties: Controllable synthesis, formation mechanism, and photochemical applications. Progress in Materials Science, 2020, 109, 100620.	32.8	100
4	Performance enhancement of perovskite solar cells using a La-doped BaSnO ₃ electron transport layer. Journal of Materials Chemistry A, 2017, 5, 3675-3682.	10.3	90
5	A star-shaped carbazole-based hole-transporting material with triphenylamine side arms for perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 12912-12918.	5.5	80
6	A PV power interval forecasting based on seasonal model and nonparametric estimation algorithm. Solar Energy, 2019, 184, 515-526.	6.1	78
7	Electrochemically Derived Grapheneâ€Like Carbon Film as a Superb Substrate for Highâ€Performance Aqueous Znâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1907120.	14.9	78
8	TiO ₂ Microspheres with Controllable Surface Area and Porosity for Enhanced Light Harvesting and Electrolyte Diffusion in Dye‧ensitized Solar Cells. Advanced Functional Materials, 2015, 25, 5946-5953.	14.9	74
9	Influence of ï€-linker on triphenylamine-based hole transporting materials in perovskite solar cells. Dyes and Pigments, 2017, 139, 129-135.	3.7	69
10	Enlarged working potential window for MnO2 supercapacitors with neutral aqueous electrolytes. Applied Surface Science, 2018, 459, 430-437.	6.1	57
11	New insight into solvent engineering technology from evolution of intermediates via one-step spin-coating approach. Science China Materials, 2017, 60, 392-398.	6.3	53
12	Controllable intermediates by molecular self-assembly for optimizing the fabrication of large-grain perovskite films via one-step spin-coating. Journal of Alloys and Compounds, 2017, 705, 205-210.	5.5	52
13	Highâ€Efficiency and UVâ€Stable Planar Perovskite Solar Cells Using a Lowâ€Temperature, Solutionâ€Processed Electronâ€Transport Layer. ChemSusChem, 2018, 11, 1232-1237.	6.8	49
14	Molecular Engineering of Simple Carbazoleâ€īriphenylamine Hole Transporting Materials by Replacing Benzene with Pyridine Unit for Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800337.	5.8	48
15	Tetraphenylmethaneâ€Arylamine Holeâ€Transporting Materials for Perovskite Solar Cells. ChemSusChem, 2017, 10, 968-975.	6.8	45
16	Anthracene–arylamine hole transporting materials for perovskite solar cells. Chemical Communications, 2017, 53, 9558-9561.	4.1	45
17	Thiophene–Arylamine Holeâ€Transporting Materials in Perovskite Solar Cells: Substitution Position Effect. Energy Technology, 2017, 5, 1788-1794.	3.8	44
18	Proton Inserted Manganese Dioxides as a Reversible Cathode for Aqueous Zn-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 319-327.	5.1	44

Lu Wang

#	Article	IF	CITATIONS
19	Self-assembled α-MnO2 urchin-like microspheres as a high-performance cathode for aqueous Zn-ion batteries. Science China Materials, 2020, 63, 1196-1204.	6.3	44
20	Solvothermal Synthesis of Hierarchical TiO2 Microstructures with High Crystallinity and Superior Light Scattering for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 32026-32033.	8.0	42
21	Exploration of polymer-assisted crystallization kinetics in CsPbBr3 all-inorganic solar cell. Chemical Engineering Journal, 2020, 392, 123805.	12.7	41
22	Fused tetraphenylethylene–triphenylamine as an efficient hole transporting material in perovskite solar cells. Chemical Communications, 2020, 56, 3159-3162.	4.1	35
23	Facile fabrication of perovskite layers with large grains through a solvent exchange approach. Inorganic Chemistry Frontiers, 2018, 5, 348-353.	6.0	34
24	A Simple Carbazole-Triphenylamine Hole Transport Material for Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 26337-26343.	3.1	34
25	Molecular engineering of simple carbazole-arylamine hole-transport materials for perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 1875-1882.	4.9	31
26	Templateâ€Assisted Formation of Highâ€Quality αâ€Phase HC(NH 2) 2 PbI 3 Perovskite Solar Cells. Advanced Science, 2019, 6, 1901591.	11.2	29
27	Facile donor (D)-π-D triphenylamine-based hole transporting materials with different π-linker for perovskite solar cells. Solar Energy, 2020, 195, 618-625.	6.1	28
28	High performance polymer solar cells with electron extraction and light-trapping dual functional cathode interfacial layer. Nano Energy, 2017, 31, 201-209.	16.0	27
29	Diketopyrrolopyrrole or benzodithiophene-arylamine small-molecule hole transporting materials for stable perovskite solar cells. RSC Advances, 2016, 6, 87454-87460.	3.6	26
30	Organic charge-transfer interface enhanced graphene hybrid phototransistors. Organic Electronics, 2019, 64, 22-26.	2.6	25
31	Boosting optoelectronic performance of MAPbI3 perovskite solar cells via ethylammonium chloride additive engineering. Science China Materials, 2020, 63, 2477-2486.	6.3	25
32	Achieving mixed halide perovskite via halogen exchange during vapor-assisted solution process for efficient and stable perovskite solar cells. Organic Electronics, 2017, 50, 33-42.	2.6	23
33	Crack-free perovskite layers for high performance and reproducible devices via improved control of ambient conditions during fabrication. Applied Surface Science, 2017, 407, 427-433.	6.1	18
34	Heteroatom effect on linear-shaped dopant-free hole transporting materials for perovskite solar cells. Solar Energy, 2021, 221, 323-331.	6.1	18
35	Effective and reproducible method for preparing low defects perovskite film toward highly photoelectric properties with large fill factor by shaping capping layer. Solar Energy, 2016, 136, 505-514.	6.1	17
36	Hole transporting material with passivating group (C N) for perovskite solar cells with improved stability. Dyes and Pigments, 2021, 187, 109129.	3.7	17

Lu Wang

#	Article	IF	CITATIONS
37	Comparative Study of Linear and Starburst Ethane-Based Hole-Transporting Materials for Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 2886-2894.	3.1	16
38	Pierced ZnO nanosheets via a template-free photopolymerization in microemulsion. Journal of Alloys and Compounds, 2019, 787, 779-785.	5.5	15
39	Shape-controlled synthesis of single-crystalline anatase TiO ₂ micro/nanoarchitectures for efficient dye-sensitized solar cells. Sustainable Energy and Fuels, 2017, 1, 520-528.	4.9	14
40	Synthesis of TiO2 microspheres building on the etherification and its application for high efficiency solar cells. Journal of Power Sources, 2016, 329, 225-231.	7.8	13
41	Improving the performance of arylamine-based hole transporting materials in perovskite solar cells: Extending π-conjugation length or increasing the number of side groups?. Journal of Energy Chemistry, 2018, 27, 1409-1414.	12.9	13
42	A Bi-functional additive for linking PI 2 and decreasing defects in organo-halide perovskites. Journal of Alloys and Compounds, 2018, 758, 171-176.	5.5	12
43	Interface modification effects using a halide-free lead source for perovskite solar cells. Sustainable Energy and Fuels, 2017, 1, 1358-1365.	4.9	3