
Bernard Mouillac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4266264/publications.pdf Version: 2024-02-01

REDNARD MOULLAC

#	Article	IF	CITATIONS
1	The Concise Guide to PHARMACOLOGY 2015/16: Enzymes. British Journal of Pharmacology, 2015, 172, 6024-6109.	5.4	521
2	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
3	The Concise Guide to PHARMACOLOGY 2015/16: G proteinâ€coupled receptors. British Journal of Pharmacology, 2015, 172, 5744-5869.	5.4	507
4	Inhibition of oxytocin receptor function by direct binding of progesterone. Nature, 1998, 392, 509-512.	27.8	456
5	Oxytocin and Vasopressin Agonists and Antagonists as Research Tools and Potential Therapeutics. Journal of Neuroendocrinology, 2012, 24, 609-628.	2.6	356
6	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
7	Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nature Chemical Biology, 2010, 6, 587-594.	8.0	306
8	Oxytocin and Vasopressin V1a and V2 Receptors Form Constitutive Homo- and Heterodimers during Biosynthesis. Molecular Endocrinology, 2003, 17, 677-691.	3.7	296
9	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview. British Journal of Pharmacology, 2017, 174, S1-S16.	5.4	269
10	Structural bases of vasopressin/oxytocin receptor function. Journal of Endocrinology, 1998, 156, 223-229.	2.6	268
11	Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: research tools and potential therapeutic agentsâ~†. Progress in Brain Research, 2008, 170, 473-512.	1.4	248
12	The Binding Site of Neuropeptide Vasopressin V1a Receptor. Journal of Biological Chemistry, 1995, 270, 25771-25777.	3.4	239
13	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	5.4	220
14	The Concise Guide to PHARMACOLOGY 2015/16: Transporters. British Journal of Pharmacology, 2015, 172, 6110-6202.	5.4	190
15	The Concise Guide to PHARMACOLOGY 2015/16: Voltageâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5904-5941.	5.4	176
16	Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6733-6738.	7.1	173
17	Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor. European Journal of Pharmacology, 1994, 267, 7-19.	2.6	167
18	Tyr115 is the key residue for determining agonist selectivity in the V1a vasopressin receptor EMBO Journal, 1995, 14, 2176-2182.	7.8	160

#	Article	IF	CITATIONS
19	The Concise Guide to PHARMACOLOGY 2015/16: Catalytic receptors. British Journal of Pharmacology, 2015, 172, 5979-6023.	5.4	158
20	The Concise Guide to PHARMACOLOGY 2013/14: Overview. British Journal of Pharmacology, 2013, 170, 1449-1458.	5.4	153
21	Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16342-16347.	7.1	152
22	Altered phosphorylation and desensitization patterns of a human beta 2-adrenergic receptor lacking the palmitoylated Cys341 EMBO Journal, 1993, 12, 349-356.	7.8	148
23	The Concise Guide to PHARMACOLOGY 2015/16: Ligandâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5870-5903.	5.4	133
24	The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors. British Journal of Pharmacology, 2015, 172, 5956-5978.	5.4	119
25	Probing the Existence of G Protein-Coupled Receptor Dimers by Positive and Negative Ligand-Dependent Cooperative Binding. Molecular Pharmacology, 2006, 70, 1783-1791.	2.3	107
26	Palmitoylated Cysteine 341 Modulates Phosphorylation of the β2-Adrenergic Receptor by the cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 1996, 271, 21490-21497.	3.4	102
27	Two aromatic residues regulate the response of the human oxytocin receptor to the partial agonist arginine vasopressin. FEBS Letters, 1996, 397, 201-206.	2.8	98
28	Biased Agonist Pharmacochaperones of the AVP V2 Receptor May Treat Congenital Nephrogenic Diabetes Insipidus. Journal of the American Society of Nephrology: JASN, 2009, 20, 2190-2203.	6.1	93
29	The D136A mutation of the V ₂ vasopressin receptor induces a constitutive activity which permits discrimination between antagonists with partial agonist and inverse agonist activities. FEBS Letters, 1998, 441, 470-475.	2.8	74
30	New advances in production and functional folding of G-protein-coupled receptors. Trends in Biotechnology, 2011, 29, 314-322.	9.3	73
31	Molecular pharmacology of AVP and OT receptors and therapeutic potential. Drug News and Perspectives, 1999, 12, 279.	1.5	70
32	Ghrelin receptor conformational dynamics regulate the transition from a preassembled to an active receptor:Gq complex. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1601-1606.	7.1	69
33	Activation of membrane phospholipase C by vasopressin. FEBS Letters, 1986, 196, 155-159.	2.8	63
34	Identification of Residues Responsible for the Selective Binding of Peptide Antagonists and Agonists in the V2 Vasopressin Receptor. Journal of Biological Chemistry, 1998, 273, 29462-29468.	3.4	63
35	Conserved aromatic residues in the transmembrane region VI of the V1avasopressin receptor differentiate agonist vs. antagonist ligand binding. FEBS Journal, 2000, 267, 4253-4263.	0.2	60
36	Toward Efficient Drug Screening by Homogeneous Assays Based on the Development of New Fluorescent Vasopressin and Oxytocin Receptor Ligands. Journal of Medicinal Chemistry, 2007, 50, 4976-4985.	6.4	59

#	Article	IF	CITATIONS
37	Mapping Peptide-binding Domains of the Human V1a Vasopressin Receptor with a Photoactivatable Linear Peptide Antagonist. Journal of Biological Chemistry, 1997, 272, 26536-26544.	3.4	56
38	Activation of polyphosphoinositide phospholipase C by fluoride in WRK1 cell membranes. FEBS Letters, 1986, 204, 183-188.	2.8	53
39	Selective Fluorescent Nonpeptidic Antagonists For Vasopressin V ₂ GPCR: Application To Ligand Screening and Oligomerization Assays Journal of Medicinal Chemistry, 2012, 55, 8588-8602.	6.4	52
40	Direct Identification of Human Oxytocin Receptor-binding Domains Using a Photoactivatable Cyclic Peptide Antagonist. Journal of Biological Chemistry, 2001, 276, 26931-26941.	3.4	51
41	Leukotriene BLT2 Receptor Monomers Activate the Gi2 GTP-binding Protein More Efficiently than Dimers. Journal of Biological Chemistry, 2010, 285, 6337-6347.	3.4	51
42	Identification of the Binding Sites of the SR49059 Nonpeptide Antagonist into the V1a Vasopressin Receptor Using Sulfydryl-reactive Ligands and Cysteine Mutants as Chemical Sensors. Journal of Biological Chemistry, 2003, 278, 40010-40019.	3.4	48
43	Heterodimerization with Its Splice Variant Blocks the Ghrelin Receptor 1a in a Non-signaling Conformation. Journal of Biological Chemistry, 2013, 288, 24656-24665.	3.4	48
44	Red Fluorescent Turnâ€On Ligands for Imaging and Quantifying G Proteinâ€Coupled Receptors in Living Cells. ChemBioChem, 2014, 15, 359-363.	2.6	47
45	Palmitoylation of G-protein-coupled receptors: a dynamic modification with functional consequences. Biochemical Society Transactions, 1995, 23, 116-120.	3.4	46
46	Synthesis and Characterization of Fluorescent Antagonists and Agonists for Human Oxytocin and Vasopressin V1aReceptors. Journal of Medicinal Chemistry, 2002, 45, 2579-2588.	6.4	43
47	Multicolor timeâ€resolved Förster resonance energy transfer microscopy reveals the impact of GPCR oligomerization on internalization processes. FASEB Journal, 2015, 29, 2235-2246.	0.5	41
48	Past, present and future of vasopressin and oxytocin receptor oligomers, prototypical GPCR models to study dimerization processes. Current Opinion in Pharmacology, 2010, 10, 59-66.	3.5	40
49	The Concise Guide to PHARMACOLOGY 2015/16: Other ion channels. British Journal of Pharmacology, 2015, 172, 5942-5955.	5.4	40
50	Docking of Linear Peptide Antagonists into the Human V1a Vasopressin Receptor. Journal of Biological Chemistry, 1999, 274, 23316-23327.	3.4	37
51	Green mamba peptide targets type-2 vasopressin receptor against polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7154-7159.	7.1	33
52	LIT-001, the First Nonpeptide Oxytocin Receptor Agonist that Improves Social Interaction in a Mouse Model of Autism. Journal of Medicinal Chemistry, 2018, 61, 8670-8692.	6.4	33
53	Genomic and Non-Genomic Mechanisms of Oxytocin Receptor Regulation. Advances in Experimental Medicine and Biology, 1998, 449, 287-295.	1.6	33
54	Transient inositol (1,4,5) trisphosphate accumulation under vasopressin stimulation in WRK1 cells: correlation with intracellular calcium mobilization. Biochemical and Biophysical Research Communications, 1989, 159, 953-960.	2.1	32

#	Article	IF	CITATIONS
55	Functional Architecture of Vasopressin/Oxytocin Receptors. Journal of Receptor and Signal Transduction Research, 1999, 19, 589-596.	2.5	31
56	The Constitutively Active V2 Receptor Mutants Conferring NSIAD Are Weakly Sensitive to Agonist and Antagonist Regulation. PLoS ONE, 2009, 4, e8383.	2.5	30
57	[24] Dynamic palmitoylation of G-protein-coupled receptors in eukaryotic cells. Methods in Enzymology, 1995, 250, 300-314.	1.0	29
58	Design of peptide oxytocin antagonists with strikingly higher affinities and selectivities for the human oxytocin receptor than atosiban. Journal of Peptide Science, 2005, 11, 593-608.	1.4	27
59	Fluorescent ligands to investigate GPCR binding properties and oligomerization. Biochemical Society Transactions, 2013, 41, 148-153.	3.4	27
60	Solidâ€Phase Organic Tagging Resins for Labeling Biomolecules by 1,3â€Đipolar Cycloaddition: Application to the Synthesis of a Fluorescent Nonâ€Peptidic Vasopressin Receptor Ligand. Chemistry - A European Journal, 2008, 14, 6247-6254.	3.3	26
61	Differential Coupling of the Vasopressin V _{1b} Receptor through Compartmentalization within the Plasma Membrane. Molecular Pharmacology, 2009, 75, 637-647.	2.3	26
62	Cryo–electron microscopy structure of the antidiuretic hormone arginine-vasopressin V2 receptor signaling complex. Science Advances, 2021, 7, .	10.3	25
63	Properties of a new radioiodinated antagonist for human vasopressin V2 and V1a receptors. European Journal of Pharmacology, 1997, 331, 285-293.	3.5	24
64	Cloning, expression and pharmacological characterization of a vasopressin-related receptor in an annelid, the leech Theromyzon tessulatum. Journal of Endocrinology, 2005, 184, 277-289.	2.6	24
65	The Two NK-1 Binding Sites Correspond to Distinct, Independent, and Non-Interconvertible Receptor Conformational States As Confirmed by Plasmon-Waveguide Resonance Spectroscopy. Biochemistry, 2006, 45, 5309-5318.	2.5	24
66	Design, synthesis and biological studies of a library of NK1-Receptor Ligands Based on a 5-arylthiosubstituted 2-amino-4,6-diaryl-3-cyano-4 H -pyran core: Switch from antagonist to agonist effect by chemical modification. European Journal of Medicinal Chemistry, 2017, 138, 644-660.	5.5	24
67	Fluorescent Agonists and Antagonists for Vasopressin/Oxytocin G Protein-Coupled Receptors: Usefulness in Ligand Screening Assays and Receptor Studies. Mini-Reviews in Medicinal Chemistry, 2008, 8, 996-1005.	2.4	23
68	Time Resolved FRET Strategy with Fluorescent Ligands to Analyze Receptor Interactions in Native Tissues: Application to GPCR Oligomerization. Methods in Molecular Biology, 2011, 746, 373-387.	0.9	22
69	Subtlety of the Structureâ^'Affinity and Structureâ^'Efficacy Relationships around a Nonpeptide Oxytocin Receptor Agonist. Journal of Medicinal Chemistry, 2010, 53, 1546-1562.	6.4	19
70	Mechanisms of phospholipase C activation: a comparison with the adenylate cyclase system. Biochimie, 1987, 69, 351-363.	2.6	18
71	Positive feedback regulation of phospholiphase C by vasopressin-induced calcium mobilization in WRK1 cells. Cellular Signalling, 1990, 2, 497-507.	3.6	18
72	Modulation of hormone-sensitive phospholipase C. Cellular Signalling, 1992, 4, 11-23.	3.6	18

#	Article	IF	CITATIONS
73	Crosslinking Photosensitized by a Ruthenium Chelate as a Tool for Labeling and Topographical Studies of G-Protein-Coupled Receptors. Chemistry and Biology, 2005, 12, 15-24.	6.0	17
74	The ligand-bound state of a G protein-coupled receptor stabilizes the interaction of functional cholesterol molecules. Journal of Lipid Research, 2021, 62, 100059.	4.2	17
75	Towards understanding the role of the first extracellular loop for the binding of peptide hormones to G-protein coupled receptors. Pharmaceutica Acta Helvetiae, 1995, 70, 255-262.	1.2	16
76	Structure of the Third Intracellular Loop of the Vasopressin V2 Receptor and Conformational Changes upon Binding to gC1qR. Journal of Molecular Biology, 2009, 388, 491-507.	4.2	16
77	V _{1b} vasopressin receptor trafficking and signaling: Role of arrestins, G proteins and Src kinase. Traffic, 2018, 19, 58-82.	2.7	15
78	Efficient Photoaffinity Labeling of the Rat V1a, Vasopressin Receptor using a Linear Azidopeptidic Antagonist. FEBS Journal, 1997, 247, 906-913.	0.2	13
79	Amphipols in G Protein-Coupled Receptor Pharmacology: What Are They Good For?. Journal of Membrane Biology, 2014, 247, 853-860.	2.1	12
80	Vasopressin receptors and pharmacological chaperones: From functional rescue to promising therapeutic strategies. Pharmacological Research, 2014, 83, 74-78.	7.1	11
81	Mammalian Membrane Receptors Expression as Inclusion Bodies in Escherichia coli. Methods in Molecular Biology, 2010, 601, 39-48.	0.9	11
82	Influence of receptor density on the patterns of β2-adrenoceptor desensitization. European Journal of Pharmacology, 1997, 326, 75-84.	3.5	10
83	Carbohydrate-Based NK1R Antagonists with Broad-Spectrum Anticancer Activity. Journal of Medicinal Chemistry, 2021, 64, 10350-10370.	6.4	10
84	Pharmacological Chaperones as Potential Therapeutic Strategies for Misfolded Mutant Vasopressin Receptors. Handbook of Experimental Pharmacology, 2017, 245, 63-83.	1.8	9
85	Pharmacological characterization of inositol 1,4,5,-trisphosphate binding sites: relation to Ca2+ release. European Journal of Pharmacology, 1992, 225, 179-193.	2.6	7
86	Design, Synthesis and Pharmacological Characterization of a Potent Radioiodinated and Photoactivatable Peptidic Oxytocin Antagonist. Journal of Medicinal Chemistry, 2001, 44, 3022-3030.	6.4	7
87	Quantitative MALDIâ€MS Binding Assays: An Alternative to Radiolabeling. ChemMedChem, 2016, 11, 2582-2587.	3.2	7
88	Vasopressin and oxytocin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	7
89	Properties of membranous phospholipase C from WRK1 cell: Sensitivity to guanylnucleotides and bacterial toxins. Cellular Signalling, 1989, 1, 541-552.	3.6	6
90	Design of Benzophenone-Containing Photoactivatable Linear Vasopressin Antagonists:Â Pharmacological and Photoreactive Properties. Journal of Medicinal Chemistry, 2005, 48, 3379-3388.	6.4	6

#	Article	IF	CITATIONS
91	Expression, purification and NMR characterization of the cyclic recombinant form of the third intracellular loop of the vasopressin type 2 receptor. Protein Expression and Purification, 2011, 78, 131-138.	1.3	6
92	Functional Rescue of a Nephrogenic Diabetes Insipidus Causing Mutation in the V2 Vasopressin Receptor by Specific Antagonist and Agonist Pharmacochaperones. Frontiers in Pharmacology, 2022, 13, 811836.	3.5	6
93	A snake toxin as a theranostic agent for the type 2 vasopressin receptor. Theranostics, 2020, 10, 11580-11594.	10.0	5
94	Identification of a Single Residue Responsible for Agonist Selectivity in the Oxytocin-Vasopressin Receptors. Annals of the New York Academy of Sciences, 1997, 812, 218-221.	3.8	4
95	The multifunctional protein GC1q-R interacts specifically with the i3 loop arginine cluster of the vasopressin V2 receptor. Regulatory Peptides, 2008, 148, 76-87.	1.9	4
96	A new Kunitzâ€ŧype snake toxin family associated with an original mode of interaction with the vasopressin 2 receptor. British Journal of Pharmacology, 2022, , .	5.4	4
97	Time-Resolved FRET-Based Assays to Characterize G Protein-Coupled Receptor Hetero-oligomer Pharmacology. Methods in Molecular Biology, 2019, 1947, 151-168.	0.9	3
98	Mapping Peptide Antagonist Binding Sites of the Human V1a and V2 Vasopressin Receptors. Advances in Experimental Medicine and Biology, 1998, 449, 359-361.	1.6	3
99	Le récepteur β2-adrénergique. Un modèle d'étude des mécanismes moléculaires de la désensibilisa Medecine/Sciences, 1995, 11, 819.	ation. 0.2	3
100	Chapter 13 Expression of human vasopressin and oxytocin receptors in Escherichia coli. Progress in Brain Research, 2002, 139, 163-177.	1.4	2
101	Fluorescent-Based Strategies to Investigate G Protein-Coupled Receptors: Evolution of the Techniques to a Better Understanding. Topics in Medicinal Chemistry, 2017, , 217-252.	0.8	1
102	Biased Agonist Pharmacochaperones: Small Molecules in the Toolbox for Selectively Modulating GPCR Activity. Topics in Medicinal Chemistry, 2017, , 163-180.	0.8	1
103	V-1A Vasopressin Receptor. , 2007, , 1-6.		0
104	Misfolding of vasopressin receptors: biased agonist pharmacochaperones as potential therapeutics. Advances in Protein Chemistry and Structural Biology, 2019, 118, 249-272.	2.3	0
105	OT Oxytocin Receptor. , 2007, , 1-7.		0
106	V-2 Vasopressin Receptor. , 2007, , 1-9.		0
107	Molecular pharmacology of vasopressin receptors. , 2002, , 639-640.		0