Athanasios T Vafeidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4266107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment. PLoS ONE, 2015, 10, e0118571.	1.1	1,613
2	Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3292-3297.	3.3	878
3	Future response of global coastal wetlands to sea-level rise. Nature, 2018, 561, 231-234.	13.7	615
4	Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model. Global and Planetary Change, 2016, 139, 15-30.	1.6	256
5	A New Global Coastal Database for Impact and Vulnerability Analysis to Sea-Level Rise. Journal of Coastal Research, 2008, 244, 917-924.	0.1	221
6	Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nature Communications, 2018, 9, 4161.	5.8	204
7	A global analysis of erosion of sandy beaches and sea-level rise: An application of DIVA. Global and Planetary Change, 2013, 111, 150-158.	1.6	197
8	A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change, 2021, 11, 338-342.	8.1	193
9	Gridded population projections for the coastal zone under the Shared Socioeconomic Pathways. Global and Planetary Change, 2016, 145, 57-66.	1.6	184
10	A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. International Journal of Disaster Risk Reduction, 2019, 35, 101069.	1.8	167
11	The ability of societies to adapt to twenty-first-century sea-level rise. Nature Climate Change, 2018, 8, 570-578.	8.1	160
12	Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA. Mitigation and Adaptation Strategies for Global Change, 2010, 15, 703-719.	1.0	120
13	Generic adaptation pathways for coastal archetypes under uncertain sea-level rise. Environmental Research Communications, 2019, 1, 071006.	0.9	103
14	Exploring Data-Related Uncertainties in Analyses of Land Area and Population in the "Low-Elevation Coastal Zone―(LECZ). Journal of Coastal Research, 2010, 27, 757.	0.1	102
15	What motivates coastal households to adapt pro-actively to sea-level rise and increasing flood risk?. Regional Environmental Change, 2013, 13, 897-909.	1.4	99
16	Shifting perspectives on coastal impacts and adaptation. Nature Climate Change, 2014, 4, 752-755.	8.1	97
17	The blue carbon wealth of nations. Nature Climate Change, 2021, 11, 704-709.	8.1	97
18	Investigating compound flooding in an estuary using hydrodynamic modelling: a case study from the Shoalhaven River, Australia. Natural Hazards and Earth System Sciences, 2018, 18, 463-477.	1.5	94

2

ATHANASIOS T VAFEIDIS

#	Article	IF	CITATIONS
19	Global estimates of the impact of a collapse of the West Antarctic ice sheet: an application of FUND. Climatic Change, 2008, 91, 171-191.	1.7	88
20	Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea level rise. Journal of Geophysical Research F: Earth Surface, 2013, 118, 84-96.	1.0	86
21	A comparison of two global datasets of extreme sea levels and resulting flood exposure. Earth's Future, 2017, 5, 379-392.	2.4	78
22	Sea-level rise impacts on Africa and the effects of mitigation and adaptation: an application of DIVA. Regional Environmental Change, 2012, 12, 207-224.	1.4	75
23	Quantifying Land and People Exposed to Seaâ€Level Rise with No Mitigation and 1.5°C and 2.0°C Rise in Global Temperatures to Year 2300. Earth's Future, 2018, 6, 583-600.	2.4	73
24	Non-linear interaction modulates global extreme sea levels, coastal flood exposure, and impacts. Nature Communications, 2020, 11, 1918.	5.8	71
25	Adaptation to Five Metres of Sea Level Rise. Journal of Risk Research, 2006, 9, 467-482.	1.4	69
26	Plausible responses to the threat of rapid sea-level rise in the Thames Estuary. Climatic Change, 2008, 91, 145-169.	1.7	63
27	Salt Marsh Accretion and Storm Tide Variation: an Example from a Barrier Island in the North Sea. Estuaries and Coasts, 2012, 35, 486-500.	1.0	61
28	Coastal flood risks in China through the 21st century – An application of DIVA. Science of the Total Environment, 2020, 704, 135311.	3.9	52
29	Householdâ€Level Coastal Adaptation and Its Drivers: A Systematic Case Study Review. Risk Analysis, 2017, 37, 629-646.	1.5	49
30	Ship-wake induced sediment remobilization: Effects and proposed management strategies for the Venice Lagoon. Ocean and Coastal Management, 2015, 110, 1-11.	2.0	47
31	Household adaptation and intention to adapt to coastal flooding in the Axios – Loudias – Aliakmonas National Park, Greece. Ocean and Coastal Management, 2013, 82, 43-50.	2.0	46
32	Future urban development exacerbates coastal exposure in the Mediterranean. Scientific Reports, 2020, 10, 14420.	1.6	46
33	Water-level attenuation in global-scale assessments of exposure to coastal flooding: a sensitivity analysis. Natural Hazards and Earth System Sciences, 2019, 19, 973-984.	1.5	45
34	A Mediterranean coastal database for assessing the impacts of sea-level rise and associated hazards. Scientific Data, 2018, 5, 180044.	2.4	44
35	A Methodology for Modeling Coastal Space for Global Assessment. Journal of Coastal Research, 2007, 234, 911-920.	0.1	42
36	Sea-level rise vulnerability in the countries of the Coral Triangle. Sustainability Science, 2010, 5, 207-222.	2.5	41

3

#	Article	IF	CITATIONS
37	Regionalized Shared Socioeconomic Pathways: narratives and spatial population projections for the Mediterranean coastal zone. Regional Environmental Change, 2018, 18, 235-245.	1.4	41
38	Potential of remote sensing techniques for tsunami hazard and vulnerability analysis – a case study from Phang-Nga province, Thailand. Natural Hazards and Earth System Sciences, 2012, 12, 2103-2126.	1.5	40
39	Unravelling interactions between salt marsh evolution and sedimentary processes in the Wadden Sea (southeastern North Sea). Progress in Physical Geography, 2014, 38, 691-715.	1.4	40
40	Sea-Level Rise Impacts and Responses: A Global Perspective. Coastal Research Library, 2013, , 117-149.	0.2	38
41	Regionalisation of population growth projections in coastal exposure analysis. Climatic Change, 2018, 151, 413-426.	1.7	35
42	Uncertainty and Bias in Global to Regional Scale Assessments of Current and Future Coastal Flood Risk. Earth's Future, 2021, 9, e2020EF001882.	2.4	35
43	A proposed method for modelling the hydrologic response of catchments to burning with the use of remote sensing and GIS. Catena, 2007, 70, 396-409.	2.2	29
44	Effects of Scale and Input Data on Assessing the Future Impacts of Coastal Flooding: An Application of DIVA for the Emilia-Romagna Coast. Frontiers in Marine Science, 2016, 3, .	1.2	29
45	Sustainability of complex social-ecological systems: methods, tools, and approaches. Regional Environmental Change, 2020, 20, 1.	1.4	27
46	Maritime boundaries in a rising sea. Nature Geoscience, 2010, 3, 813-816.	5.4	25
47	Global costs of protecting against sea-level rise at 1.5 to 4.0°C. Climatic Change, 2021, 167, 1.	1.7	24
48	A twoâ€step method for estimating the extent of burnt areas with the use of coarseâ€resolution data. International Journal of Remote Sensing, 2005, 26, 2441-2459.	1.3	23
49	Worst case scenario as stakeholder decision support: a 5- to 6-m sea level rise in the Rhone delta, France. Climatic Change, 2008, 91, 123-143.	1.7	22
50	Exploring human-nature interaction on the coastal floodplain in the Ganges-Brahmaputra delta through the lens of Ostrom's social-ecological systems framework. Environmental Research Communications, 2019, 1, 051003.	0.9	20
51	Effective design of managed realignment schemes can reduce coastal flood risks. Estuarine, Coastal and Shelf Science, 2020, 242, 106844.	0.9	20
52	Extending the Shared Socioeconomic Pathways (SSPs) to support local adaptation planning—A climate service for Flensburg, Germany. Futures, 2021, 127, 102691.	1.4	19
53	Are Extreme Skew Surges Independent of High Water Levels in a Mixed Semidiurnal Tidal Regime?. Journal of Geophysical Research: Oceans, 2018, 123, 8877-8886.	1.0	18
54	A Stochastic Extreme Sea Level Model for the German Baltic Sea Coast. Journal of Geophysical Research: Oceans, 2019, 124, 2054-2071.	1.0	18

ATHANASIOS T VAFEIDIS

#	Article	IF	CITATIONS
55	Effects of the Temporal Variability of Storm Surges on Coastal Flooding. Frontiers in Marine Science, 2020, 7, .	1.2	18
56	Co-production of climate services: A story map for future coastal flooding for the city of Flensburg. Climate Services, 2021, 22, 100225.	1.0	18
57	Quantification of submarine groundwater discharge and optimal radium sampling distribution in the Lesina Lagoon, Italy. Journal of Marine Systems, 2012, 91, 11-19.	0.9	17
58	Using Information on Settlement Patterns to Improve the Spatial Distribution of Population in Coastal Impact Assessments. Sustainability, 2018, 10, 3170.	1.6	16
59	A typology of household-level adaptation to coastal flooding and its spatio-temporal patterns. SpringerPlus, 2014, 3, 466.	1.2	14
60	Seaâ€level rise impacts on the temporal and spatial variability of extreme water levels: A case study for St. Peterâ€Ording, Germany. Journal of Geophysical Research: Oceans, 2017, 122, 2742-2759.	1.0	11
61	Changing Sediment Dynamics of a Mature Backbarrier Salt Marsh in Response to Sea-Level Rise and Storm Events. Frontiers in Marine Science, 2018, 5, .	1.2	11
62	The effectiveness of setback zones for adapting to sea-level rise in Croatia. Regional Environmental Change, 2020, 20, 1.	1.4	11
63	Regional economic analysis of flood defence heights at the German Baltic Sea coast: A multi-method cost-benefit approach for flood prevention. Climate Risk Management, 2021, 32, 100289.	1.5	11
64	Attenuation of high water levels over restored saltmarshes can be limited. Insights from Freiston Shore, Lincolnshire, UK. Ecological Engineering, 2019, 136, 89-100.	1.6	10
65	Unravelling the Importance of Uncertainties in Global-Scale Coastal Flood Risk Assessments under Sea Level Rise. Water (Switzerland), 2021, 13, 774.	1.2	10
66	Accounting for internal migration in spatial population projections—a gravity-based modeling approach using the Shared Socioeconomic Pathways. Environmental Research Letters, 2021, 16, 074025.	2.2	10
67	Investigating the interaction of waves and river discharge during compound flooding at Breede Estuary, South Africa. Natural Hazards and Earth System Sciences, 2022, 22, 187-205.	1.5	10
68	Long-Term Trends and Variability of Water Levels and Tides in Buenos Aires and Mar del Plata, Argentina. Frontiers in Marine Science, 2017, 4, .	1.2	9
69	Comparing static and dynamic flood models in estuarine environments: a case study from south-east Australia. Marine and Freshwater Research, 2019, 70, 781.	0.7	9
70	Can Managed Realignment Buffer Extreme Surges? The Relationship Between Marsh Width, Vegetation Cover and Surge Attenuation. Estuaries and Coasts, 2022, 45, 345-362.	1.0	8
71	The development and use of a spatial database for the determination and characterization of the state of the German Baltic small-scale fishery sector. ICES Journal of Marine Science, 2012, 69, 1480-1490.	1.2	7
72	Using indicators based on primary fisheries' data for assessing the development of the German Baltic small-scale fishery and reviewing its adaptation potential to changes in resource abundance and management during 2000–09. Ocean and Coastal Management, 2014, 98, 38-50.	2.0	6

#	Article	IF	CITATIONS
73	Benefits of Climate-Change Mitigation for Reducing the Impacts of Sea-Level Rise in G-20 Countries. Journal of Coastal Research, 2019, 35, 884.	0.1	6
74	Comment on †The Global Impacts of Extreme Sea-Level Rise: A Comprehensive Economic Assessment'. Environmental and Resource Economics, 2016, 64, 341-344.	1.5	5
75	Coastal inundation multi-hazard analysis for a construction site in Malaysia. International Journal of Risk Assessment and Management, 2016, 19, 142.	0.2	3
76	Forecasting Salt-Water Intrusion into Coastal Aquifers Due to Climate Change. , 2010, , .		2
77	A GLOBAL ANALYSIS OF COASTAL EROSION OF BEACHES DUE TO SEA-LEVEL RISE: AN APPLICATION OF DIVA. , 2011, , .		2
78	TO WHAT EXTENT ARE SOCIETIES ABLE TO ADAPT TO 21ST CENTURY SEA-LEVEL RISE?. , 2019, , .		0