List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4265895/publications.pdf Version: 2024-02-01

IIAN-HUA VIE

#	Article	IF	CITATIONS
1	Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate Polymers, 2018, 183, 91-101.	10.2	833
2	Advances on Bioactive Polysaccharides from Medicinal Plants. Critical Reviews in Food Science and Nutrition, 2016, 56, S60-S84.	10.3	364
3	Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. Journal of Functional Foods, 2015, 14, 111-125.	3.4	339
4	Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Iljinskaja. Food Chemistry, 2010, 119, 1626-1632.	8.2	269
5	Sulfated modification, characterization and antioxidant activities of polysaccharide from Cyclocarya paliurus. Food Hydrocolloids, 2016, 53, 7-15.	10.7	246
6	Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocolloids, 2018, 76, 131-140.	10.7	238
7	Purification, physicochemical characterisation and anticancer activity of a polysaccharide from Cyclocarya paliurus leaves. Food Chemistry, 2013, 136, 1453-1460.	8.2	234
8	Recent Advances in Momordica charantia: Functional Components and Biological Activities. International Journal of Molecular Sciences, 2017, 18, 2555.	4.1	221
9	Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities. Trends in Food Science and Technology, 2018, 74, 147-157.	15.1	193
10	Ultrasonic-assisted extraction, antimicrobial and antioxidant activities of Cyclocarya paliurus (Batal.) Iljinskaja polysaccharides. Carbohydrate Polymers, 2012, 89, 177-184.	10.2	190
11	Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food Chemistry, 2015, 186, 97-105.	8.2	171
12	Functional, physicochemical properties and structure of cross-linked oxidized maize starch. Food Hydrocolloids, 2014, 36, 45-52.	10.7	170
13	Physico-chemical properties, antioxidant activities and angiotensin-l converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food Chemistry, 2019, 270, 243-250.	8.2	170
14	Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 2021, 140, 109858.	6.2	169
15	Chemical modifications of polysaccharides and their anti-tumor activities. Carbohydrate Polymers, 2020, 229, 115436.	10.2	164
16	Sulfated polysaccharides: Immunomodulation and signaling mechanisms. Trends in Food Science and Technology, 2019, 92, 1-11.	15.1	161
17	Recent advances in bioactive polysaccharides from Lycium barbarum L., Zizyphus jujuba Mill, Plantago spp., and Morus spp.: Structures and functionalities. Food Hydrocolloids, 2016, 60, 148-160.	10.7	151
18	Gel properties and interactions of Mesona blumes polysaccharide-soy protein isolates mixed gel: The effect of salt addition. Carbohydrate Polymers, 2018, 192, 193-201.	10.2	135

#	Article	IF	CITATIONS
19	Immunomodulatory effects of an acetylated Cyclocarya paliurus polysaccharide on murine macrophages RAW264.7. International Journal of Biological Macromolecules, 2017, 98, 576-581.	7.5	133
20	Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice. International Journal of Biological Macromolecules, 2015, 81, 538-543.	7.5	120
21	Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages. Carbohydrate Polymers, 2017, 174, 669-676.	10.2	117
22	Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation. Food Hydrocolloids, 2019, 94, 468-474.	10.7	117
23	Effects of Mesona chinensis Benth polysaccharide on physicochemical and rheological properties of sweet potato starch and its interactions. Food Hydrocolloids, 2020, 99, 105371.	10.7	117
24	Natural polysaccharides exhibit anti-tumor activity by targeting gut microbiota. International Journal of Biological Macromolecules, 2019, 121, 743-751.	7.5	114
25	Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocolloids, 2020, 101, 105549.	10.7	107
26	Advanced applications of chitosan-based hydrogels: From biosensors to intelligent food packaging system. Trends in Food Science and Technology, 2021, 110, 822-832.	15.1	107
27	Reprint of "Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays― Journal of Functional Foods, 2015, 18, 782-796.	3.4	104
28	Polysaccharide from Mesona chinensis : Extraction optimization, physicochemical characterizations and antioxidant activities. International Journal of Biological Macromolecules, 2017, 99, 665-673.	7.5	101
29	Preparation, characterization and antioxidant activities of acetylated polysaccharides from Cyclocarya paliurus leaves. Carbohydrate Polymers, 2015, 133, 596-604.	10.2	99
30	Analysis of monosaccharide composition of Cyclocarya paliurus polysaccharide with anion exchange chromatography. Carbohydrate Polymers, 2013, 98, 976-981.	10.2	98
31	A mini-review of chemical and biological properties of polysaccharides from Momordica charantia. International Journal of Biological Macromolecules, 2016, 92, 246-253.	7.5	98
32	Differentiated Caco-2Âcell models in food-intestine interaction study: Current applications and future trends. Trends in Food Science and Technology, 2021, 107, 455-465.	15.1	93
33	Recent advance in delivery system and tissue engineering applications of chondroitin sulfate. Carbohydrate Polymers, 2020, 230, 115650.	10.2	91
34	Two water-soluble polysaccharides from mung bean skin: Physicochemical characterization, antioxidant and antibacterial activities. Food Hydrocolloids, 2020, 100, 105412.	10.7	89
35	Carboxymethylation of polysaccharide from Cyclocarya paliurus and their characterization and antioxidant properties evaluation. Carbohydrate Polymers, 2016, 136, 988-994.	10.2	88
36	Sulfated Cyclocarya paliurus polysaccharides markedly attenuates inflammation and oxidative damage in lipopolysaccharide-treated macrophage cells and mice. Scientific Reports, 2017, 7, 40402.	3.3	88

#	Article	IF	CITATIONS
37	Sulfated polysaccharides from Cyclocarya paliurus reduce H 2 O 2 -induced oxidative stress in RAW264.7 cells. International Journal of Biological Macromolecules, 2015, 80, 410-417.	7.5	87
38	Ethanol modified supercritical carbon dioxide extraction of flavonoids from Momordica charantia L. and its antioxidant activity. Food and Bioproducts Processing, 2012, 90, 579-587.	3.6	86
39	Effect of sodium carbonate on the gelation, rheology, texture and structural properties of maize starch-Mesona chinensis polysaccharide gel. Food Hydrocolloids, 2019, 87, 943-951.	10.7	78
40	Effect of ultrasonic treatment on the physicochemical properties and antioxidant activities of polysaccharide from Cyclocarya paliurus. Carbohydrate Polymers, 2016, 151, 305-312.	10.2	77
41	Influence of Mesona blumes polysaccharide on the gel properties and microstructure of acid-induced soy protein isolate gels. Food Chemistry, 2020, 313, 126125.	8.2	77
42	Sulfated modification enhanced the antioxidant activity of Mesona chinensis Benth polysaccharide and its protective effect on cellular oxidative stress. International Journal of Biological Macromolecules, 2019, 136, 1000-1006.	7.5	76
43	Optimisation of microwaveâ€assisted extraction of polysaccharides from <i>Cyclocarya paliurus</i> (Batal.) Iljinskaja using response surface methodology. Journal of the Science of Food and Agriculture, 2010, 90, 1353-1360.	3.5	73
44	Comparison of functional and structural properties of native and industrial process-modified proteins from long-grain indica rice. Journal of Cereal Science, 2012, 56, 568-575.	3.7	73
45	Effect of Mesona chinensis polysaccharide on pasting, rheological and structural properties of corn starches varying in amylose contents. Carbohydrate Polymers, 2020, 230, 115713.	10.2	73
46	Review on cell models to evaluate the potential antioxidant activity of polysaccharides. Food and Function, 2017, 8, 915-926.	4.6	72
47	An acidic heteropolysaccharide from Mesona chinensis: Rheological properties, gelling behavior and texture characteristics. International Journal of Biological Macromolecules, 2018, 107, 1591-1598.	7.5	72
48	Effect of Mesona chinensis polysaccharide on the pasting, thermal and rheological properties of wheat starch. International Journal of Biological Macromolecules, 2018, 118, 945-951.	7.5	71
49	Structure, function and advance application of microwave-treated polysaccharide: A review. Trends in Food Science and Technology, 2022, 123, 198-209.	15.1	69
50	Effect of different Mesona chinensis polysaccharides on pasting, gelation, structural properties and in vitro digestibility of tapioca starch-Mesona chinensis polysaccharides gels. Food Hydrocolloids, 2020, 99, 105327.	10.7	68
51	Recent progress in the research of yam mucilage polysaccharides: Isolation, structure and bioactivities. International Journal of Biological Macromolecules, 2020, 155, 1262-1269.	7.5	66
52	Physicochemical characterization, antioxidant activity of polysaccharides from Mesona chinensis Benth and their protective effect on injured NCTC-1469 cells induced by H2O2. Carbohydrate Polymers, 2017, 175, 538-546.	10.2	65
53	Systematic review on modification methods of dietary fiber. Food Hydrocolloids, 2021, 119, 106872.	10.7	65
54	Effect of high-pressure microfluidization treatment on the physicochemical properties and antioxidant activities of polysaccharide from Mesona chinensis Benth. Carbohydrate Polymers, 2018, 200. 191-199.	10.2	63

#	Article	IF	CITATIONS
55	Interaction between rice starch and Mesona chinensis Benth polysaccharide gels: Pasting and gelling properties. Carbohydrate Polymers, 2020, 240, 116316.	10.2	63
56	Phytosterols Suppress Phagocytosis and Inhibit Inflammatory Mediators via ERK Pathway on LPS-Triggered Inflammatory Responses in RAW264.7 Macrophages and the Correlation with Their Structure. Foods, 2019, 8, 582.	4.3	62
57	Physical quality and in vitro starch digestibility of biscuits as affected by addition of soluble dietary fiber from defatted rice bran. Food Hydrocolloids, 2020, 99, 105349.	10.7	61
58	Effects of α-amylase and glucoamylase on the characterization and function of maize porous starches. Food Hydrocolloids, 2021, 116, 106661.	10.7	59
59	Protective effect of flavonoids from Cyclocarya paliurus leaves against carbon tetrachloride-induced acute liver injury in mice. Food and Chemical Toxicology, 2018, 119, 392-399.	3.6	57
60	Structure, function and food applications of carboxymethylated polysaccharides: A comprehensive review. Trends in Food Science and Technology, 2021, 118, 539-557.	15.1	56
61	Mesona chinensis Benth polysaccharides protect against oxidative stress and immunosuppression in cyclophosphamide-treated mice via MAPKs signal transduction pathways. International Journal of Biological Macromolecules, 2020, 152, 766-774.	7.5	55
62	Separation of water-soluble polysaccharides from Cyclocarya paliurus by ultrafiltration process. Carbohydrate Polymers, 2014, 101, 479-483.	10.2	54
63	Antioxidant, α-amylase and α-glucosidase inhibitory activities of bound polyphenols extracted from mung bean skin dietary fiber. LWT - Food Science and Technology, 2020, 132, 109943.	5.2	53
64	Characterizations and hepatoprotective effect of polysaccharides from Mesona blumes against tetrachloride-induced acute liver injury in mice. International Journal of Biological Macromolecules, 2019, 124, 788-795.	7.5	52
65	Physicochemical characterization and immunomodulatory activity of sulfated Chinese yam polysaccharide. International Journal of Biological Macromolecules, 2020, 165, 635-644.	7.5	52
66	Role of chitosan-based hydrogels in pollutants adsorption and freshwater harvesting: A critical review. International Journal of Biological Macromolecules, 2021, 189, 53-64.	7.5	50
67	Effect of Mesona chinensis polysaccharide on the retrogradation properties of maize and waxy maize starches during storage. Food Hydrocolloids, 2020, 101, 105538.	10.7	49
68	Preparation, characterization, antioxidant activity and protective effect against cellular oxidative stress of phosphorylated polysaccharide from Cyclocarya paliurus. Food and Chemical Toxicology, 2020, 145, 111754.	3.6	49
69	Cyclocarya paliurus polysaccharide alleviates liver inflammation in mice via beneficial regulation of gut microbiota and TLR4/MAPK signaling pathways. International Journal of Biological Macromolecules, 2020, 160, 164-174.	7.5	49
70	Decolorization of polysaccharides solution from Cyclocarya paliurus (Batal.) Iljinskaja using ultrasound/H2O2 process. Carbohydrate Polymers, 2011, 84, 255-261.	10.2	48
71	In vitro fermentation of the polysaccharides from Cyclocarya paliurus leaves by human fecal inoculums. Carbohydrate Polymers, 2014, 112, 563-568.	10.2	47
72	Enhancing the oxidative stability of food emulsions with rice dreg protein hydrolysate. Food Research International, 2012, 48, 876-884.	6.2	46

#	Article	IF	CITATIONS
73	Effects of Mesona chinensis polysaccharide on the thermostability, gelling properties, and molecular forces of whey protein isolate gels. Carbohydrate Polymers, 2020, 242, 116424.	10.2	45
74	Release and metabolism of bound polyphenols from carrot dietary fiber and their potential activity in <i>in vitro</i> digestion and colonic fermentation. Food and Function, 2020, 11, 6652-6665.	4.6	45
75	Composition of bound polyphenols from carrot dietary fiber and its in vivo and in vitro antioxidant activity. Food Chemistry, 2021, 339, 127879.	8.2	45
76	Effects of different hydrocolloids on gelatinization and gels structure of chestnut starch. Food Hydrocolloids, 2021, 120, 106925.	10.7	45
77	Effects of fermentation on the structural characteristics and in vitro binding capacity of soluble dietary fiber from tea residues. LWT - Food Science and Technology, 2020, 131, 109818.	5.2	44
78	Physicochemical and functional properties of a water-soluble polysaccharide extracted from Mung bean (Vigna radiate L.) and its antioxidant activity. International Journal of Biological Macromolecules, 2019, 138, 874-880.	7.5	43
79	Fast quantification of total volatile basic nitrogen (TVB-N) content in beef and pork by near-infrared spectroscopy: Comparison of SVR and PLS model. Meat Science, 2021, 180, 108559.	5.5	43
80	Evaluation of the protective effects of <i>Ganoderma atrum</i> polysaccharide on acrylamide-induced injury in small intestine tissue of rats. Food and Function, 2019, 10, 5863-5872.	4.6	42
81	Cyclocarya paliurus polysaccharide improves metabolic function of gut microbiota by regulating short-chain fatty acids and gut microbiota composition. Food Research International, 2021, 141, 110119.	6.2	42
82	Ganoderma atrum polysaccharide ameliorates intestinal mucosal dysfunction associated with autophagy in immunosuppressed mice. Food and Chemical Toxicology, 2020, 138, 111244.	3.6	41
83	A comprehensive review of advanced glycosylation end products and N- Nitrosamines in thermally processed meat products. Food Control, 2022, 131, 108449.	5.5	40
84	Modification of starch by polysaccharides in pasting, rheology, texture and in vitro digestion: A review. International Journal of Biological Macromolecules, 2022, 207, 81-89.	7.5	40
85	Physicochemical, rheological and thermal properties of Mesona chinensis polysaccharides obtained by sodium carbonate assisted and cellulase assisted extraction. International Journal of Biological Macromolecules, 2019, 126, 30-36.	7.5	39
86	A <i>Ganoderma atrum</i> polysaccharide alleviated DSS-induced ulcerative colitis by protecting the apoptosis/autophagy-regulated physical barrier and the DC-related immune barrier. Food and Function, 2020, 11, 10690-10699.	4.6	39
87	Ameliorative effect of Cyclocarya paliurus polysaccharides against carbon tetrachloride induced oxidative stress in liver and kidney of mice. Food and Chemical Toxicology, 2020, 135, 111014.	3.6	38
88	Interactions between tapioca starch and Mesona chinensis polysaccharide: Effects of urea and NaCl. Food Hydrocolloids, 2021, 111, 106268.	10.7	37
89	Modification of tea residue dietary fiber by high-temperature cooking assisted enzymatic method: Structural, physicochemical and functional properties. LWT - Food Science and Technology, 2021, 145, 111314.	5.2	37
90	Effect of maize, potato, and pea starches with Mesona chinensis polysaccharide on pasting, gelatinization properties, granular morphology and digestion. Food Hydrocolloids, 2020, 108, 106047.	10.7	36

#	Article	IF	CITATIONS
91	The water-soluble non-starch polysaccharides from natural resources against excessive oxidative stress: A potential health-promoting effect and its mechanisms. International Journal of Biological Macromolecules, 2021, 171, 320-330.	7.5	36
92	Maillard reaction harmful products in dairy products: Formation, occurrence, analysis, and mitigation strategies. Food Research International, 2022, 151, 110839.	6.2	36
93	Role of salt ions and molecular weights on the formation of Mesona chinensis polysaccharide-chitosan polyelectrolyte complex hydrogel. Food Chemistry, 2020, 333, 127493.	8.2	35
94	Sulfation modification enhances the intestinal regulation of <i>Cyclocarya paliurus</i> polysaccharides in cyclophosphamide-treated mice <i>via</i> restoring intestinal mucosal barrier function and modulating gut microbiota. Food and Function, 2021, 12, 12278-12290.	4.6	35
95	Immunomodulatory activities of sulfated Cyclocarya paliurus polysaccharides with different degrees of substitution on mouse spleen lymphocytes. Journal of Functional Foods, 2020, 64, 103706.	3.4	34
96	Mesona chinensis polysaccharide on the thermal, structural and digestibility properties of waxy and normal maize starches. Food Hydrocolloids, 2021, 112, 106317.	10.7	34
97	The recovery, catabolism and potential bioactivity of polyphenols from carrot subjected to in vitro simulated digestion and colonic fermentation. Food Research International, 2021, 143, 110263.	6.2	34
98	Sulfated modification enhances the modulatory effect of yam polysaccharide on gut microbiota in cyclophosphamide-treated mice. Food Research International, 2021, 145, 110393.	6.2	34
99	Simultaneous determination of furan and 2-alkylfurans in heat-processed foods by automated static headspace gas chromatography-mass spectrometry. LWT - Food Science and Technology, 2016, 72, 44-54.	5.2	33
100	Regulatory effects of Ganoderma atrum polysaccharides on LPS-induced inflammatory macrophages model and intestinal-like Caco-2/macrophages co-culture inflammation model. Food and Chemical Toxicology, 2020, 140, 111321.	3.6	33
101	Differences between phytosterols with different structures in regulating cholesterol synthesis, transport and metabolism in Caco-2 cells. Journal of Functional Foods, 2020, 65, 103715.	3.4	32
102	Effect of acid/alkali shifting on function, gelation properties, and microstructure of Mesona chinensis polysaccharide-whey protein isolate gels. Food Hydrocolloids, 2021, 117, 106699.	10.7	32
103	Enrichment of yogurt with carrot soluble dietary fiber prepared by three physical modified treatments: Microstructure, rheology and storage stability. Innovative Food Science and Emerging Technologies, 2022, 75, 102901.	5.6	32
104	Mesona chinensis polysaccharide/zein nanoparticles to improve the bioaccesibility and in vitro bioactivities of curcumin. Carbohydrate Polymers, 2022, 295, 119875.	10.2	32
105	Simultaneous analysis of 18 mineral elements in Cyclocarya paliurus polysaccharide by ICP-AES. Carbohydrate Polymers, 2013, 94, 216-220.	10.2	31
106	Gelling mechanism and interactions of polysaccharides from Mesona blumes: Role of urea and calcium ions. Carbohydrate Polymers, 2019, 212, 270-276.	10.2	31
107	Fabrication of a soluble crosslinked corn bran arabinoxylan matrix supports a shift to butyrogenic gut bacteria. Food and Function, 2019, 10, 4497-4504.	4.6	30
108	The effect of bound polyphenols on the fermentation and antioxidant properties of carrot dietary fiber <i>in vivo</i> and <i>in vitro</i> . Food and Function, 2020, 11, 748-758.	4.6	30

#	Article	IF	CITATIONS
109	Isolation, structure, and bioactivities of polysaccharides from <i>Cyclocarya paliurus</i> (Batal.) Iljinskaja. Annals of the New York Academy of Sciences, 2017, 1398, 20-29.	3.8	29
110	The protective effects of the <i>Ganoderma atrum</i> polysaccharide against acrylamide-induced inflammation and oxidative damage in rats. Food and Function, 2021, 12, 397-407.	4.6	29
111	Fast determination of lipid and protein content in green coffee beans from different origins using NIR spectroscopy and chemometrics. Journal of Food Composition and Analysis, 2021, 102, 104055.	3.9	28
112	Physicochemical characterization, rheological and antioxidant properties of three alkali-extracted polysaccharides from mung bean skin. Food Hydrocolloids, 2022, 132, 107867.	10.7	28
113	Catabolism of polyphenols released from mung bean coat and its effects on gut microbiota during in vitro simulated digestion and colonic fermentation. Food Chemistry, 2022, 396, 133719.	8.2	28
114	Bound Polyphenols from Insoluble Dietary Fiber of Defatted Rice Bran by Solid-State Fermentation with <i>Trichoderma viride</i> : Profile, Activity, and Release Mechanism. Journal of Agricultural and Food Chemistry, 2021, 69, 5026-5039.	5.2	27
115	Mung Bean Protein Hydrolysates Protect Mouse Liver Cell Line Nctc-1469 Cell from Hydrogen Peroxide-Induced Cell Injury. Foods, 2020, 9, 14.	4.3	26
116	Construction and characterization of Mesona chinensis polysaccharide-chitosan hydrogels, role of chitosan deacetylation degree. Carbohydrate Polymers, 2021, 257, 117608.	10.2	26
117	Natural Food Polysaccharides Ameliorate Inflammatory Bowel Disease and Its Mechanisms. Foods, 2021, 10, 1288.	4.3	26
118	Effects of chitosan modification, cross-linking, and oxidation on the structure, thermal stability, and adsorption properties of porous maize starch. Food Hydrocolloids, 2022, 124, 107288.	10.7	26
119	Controlling the pasting, rheological, gel, and structural properties of corn starch by incorporation of debranched waxy corn starch. Food Hydrocolloids, 2022, 123, 107136.	10.7	25
120	Comparison of chemical and fatty acid composition of green coffee bean (Coffea arabica L.) from different geographical origins. LWT - Food Science and Technology, 2021, 140, 110802.	5.2	24
121	Acid/alkali shifting of Mesona chinensis polysaccharide-whey protein isolate gels: Characterization and formation mechanism. Food Chemistry, 2021, 355, 129650.	8.2	24
122	Sulfated modification enhances the immunomodulatory effect of Cyclocarya paliurus polysaccharide on cyclophosphamide-induced immunosuppressed mice through MyD88-dependent MAPK/NF-I®B and PI3K-Akt signaling pathways. Food Research International, 2021, 150, 110756.	6.2	24
123	Influence of different cooking methods on the nutritional and potentially harmful components of peanuts. Food Chemistry, 2020, 316, 126269.	8.2	23
124	Mesona chinensis Benth polysaccharides alleviates liver injury by beneficial regulation of gut microbiota in cyclophosphamide-induced mice. Food Science and Human Wellness, 2022, 11, 74-84.	4.9	23
125	<i>Mesona chinensis</i> Benth Polysaccharides Alleviate DSSâ€Induced Ulcerative Colitis via Inhibiting of TLR4/MAPK/NFâ€IPB Signaling Pathways and Modulating Intestinal Microbiota. Molecular Nutrition and Food Research, 2022, 66, .	3.3	23
126	Physicochemical structure and functional properties of soluble dietary fibers obtained by different modification methods from Mesona chinensis Benth. residue. Food Research International, 2022, 157, 111489.	6.2	23

#	Article	IF	CITATIONS
127	Rheological behavior, microstructure characterization and formation mechanism of Mesona blumes polysaccharide gels induced by calcium ions. Food Hydrocolloids, 2019, 94, 136-143.	10.7	22
128	Effect of Mesona chinensis polysaccharide on the pasting, rheological, and structural properties of tapioca starch varying in gelatinization temperatures. International Journal of Biological Macromolecules, 2020, 156, 137-143.	7.5	22
129	Improve properties of sweet potato starch film using dual effects: Combination Mesona chinensis Benth polysaccharide and sodium carbonate. LWT - Food Science and Technology, 2021, 140, 110679.	5.2	22
130	Cross-linked corn bran arabinoxylan improves the pasting, rheological, gelling properties of corn starch and reduces its in vitro digestibility. Food Hydrocolloids, 2022, 126, 107440.	10.7	22
131	Protective effect of Ganoderma atrum polysaccharide on acrolein-induced macrophage injury via autophagy-dependent apoptosis pathway. Food and Chemical Toxicology, 2019, 133, 110757.	3.6	21
132	Gelation characteristics of Mesona chinensis polysaccharide-maize starches gels: Influences of KCl and NaCl. Journal of Cereal Science, 2020, 96, 103108.	3.7	21
133	Indirectly stimulation of DCs by Ganoderma atrum polysaccharide in intestinal-like Caco-2/DCs co-culture model based on RNA-seq. Journal of Functional Foods, 2020, 67, 103850.	3.4	21
134	Characterization and authentication of olive, camellia and other vegetable oils by combination of chromatographic and chemometric techniques: role of fatty acids, tocopherols, sterols and squalene. European Food Research and Technology, 2021, 247, 411-426.	3.3	21
135	The role of alkali in sweet potato starch-Mesona chinensis Benth polysaccharide gels: Gelation, rheological and structural properties. International Journal of Biological Macromolecules, 2021, 170, 366-374.	7.5	21
136	Combined microwave and enzymatic treatment improve the release of insoluble bound phenolic compounds from the grapefruit peel insoluble dietary fiber. LWT - Food Science and Technology, 2021, 149, 111905.	5.2	21
137	Influences of Operating Parameters on the Formation of Furan During Heating Based on Models of Polyunsaturated Fatty Acids. Journal of Food Science, 2015, 80, T1432-7.	3.1	20
138	Enzymatic multifunctional biodegradable polymers for pH- and ROS-responsive anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111067.	5.0	20
139	Sulfated Chinese yam polysaccharide enhances the immunomodulatory activity of RAW 264.7 cells <i>via</i> the TLR4-MAPK/NF-κB signaling pathway. Food and Function, 2022, 13, 1316-1326.	4.6	20
140	Elucidation of the interaction effect between dietary fiber and bound polyphenol components on the anti-hyperglycemic activity of tea residue dietary fiber. Food and Function, 2022, 13, 2710-2728.	4.6	20
141	Effects of sulfation and carboxymethylation on Cyclocarya paliurus polysaccharides: Physicochemical properties, antitumor activities and protection against cellular oxidative stress. International Journal of Biological Macromolecules, 2022, 204, 103-115.	7.5	20
142	Metabonomics combined with 16S rRNA sequencing to elucidate the hypoglycemic effect of dietary fiber from tea residues. Food Research International, 2022, 155, 111122.	6.2	20
143	Coexistence of strange nonchaotic attractors and a special mixed attractor caused by a new intermittency in a periodically driven vibro-impact system. Nonlinear Dynamics, 2017, 87, 1187-1207.	5.2	19
144	Enzymatic synthesis of PEG–poly(amine- <i>co</i> -thioether esters) as highly efficient pH and ROS dual-responsive nanocarriers for anticancer drug delivery. Journal of Materials Chemistry B, 2019, 7, 651-664.	5.8	19

#	Article	IF	CITATIONS
145	Rapid simultaneous detection of fumonisin B1 and deoxynivalenol in grain by immunochromatographic test strip. Analytical Biochemistry, 2020, 606, 113878.	2.4	19
146	Chestnut starch modification with dry heat treatment and addition of xanthan gum: Gelatinization, structural and functional properties. Food Hydrocolloids, 2022, 124, 107205.	10.7	19
147	Sulfated Mesona chinensis Benth polysaccharide enhance the immunomodulatory activities of cyclophosphamide-treated mice. Journal of Functional Foods, 2021, 76, 104321.	3.4	18
148	Preparation and characterization of hyacinth bean starch film incorporated with TiO2 nanoparticles and Mesona chinensis Benth polysaccharide. International Journal of Biological Macromolecules, 2021, 190, 151-158.	7.5	18
149	Comparison of structural, functional and <i>in vitro</i> digestion properties of bread incorporated with grapefruit peel soluble dietary fibers prepared by three microwave-assisted modifications. Food and Function, 2020, 11, 6458-6466.	4.6	17
150	High arabinoxylan fine structure specificity to gut bacteria driven by corn genotypes but not environment. Carbohydrate Polymers, 2021, 257, 117667.	10.2	17
151	Combined RNA-seq and molecular biology technology revealed the protective effect of Cyclocarya paliurus polysaccharide on H2O2-induced oxidative damage in LO2 cells thought regulating mitochondrial function, oxidative stress and PI3K/Akt and MAPK signaling pathways. Food Research International. 2022. 155. 111080.	6.2	17
152	Harmonic and subharmonic solutions of the SD oscillator. Nonlinear Dynamics, 2016, 84, 2477-2486.	5.2	16
153	Dietary polysaccharide from Mung bean [<i>Vigna radiate</i> (Linn.) Wilczek] skin modulates gut microbiota and shortâ€chain fatty acids in mice. International Journal of Food Science and Technology, 2022, 57, 2581-2589.	2.7	16
154	Effect of calcium chloride on heat-induced Mesona chinensis polysaccharide-whey protein isolation gels: Gel properties and interactions. LWT - Food Science and Technology, 2022, 155, 112907.	5.2	16
155	Immunomodulation effect of polysaccharides from liquid fermentation of Monascus purpureus 40269 via membrane TLR-4 to activate the MAPK and NF-κB signaling pathways. International Journal of Biological Macromolecules, 2022, 201, 480-491.	7.5	16
156	Mechanisms of RAW264.7 macrophages immunomodulation mediated by polysaccharide from mung bean skin based on RNA-seq analysis. Food Research International, 2022, 154, 111017.	6.2	16
157	Purification and identification of novel antioxidative peptide released from Black-bone silky fowl (Gallus gallus domesticus Brisson). European Food Research and Technology, 2013, 237, 253-263.	3.3	15
158	Effects of some flavonoids on the mycotoxin citrinin reduction by Monascus aurantiacus Li AS3.4384 during liquid-state fermentation. AMB Express, 2020, 10, 26.	3.0	15
159	Metabolomics analysis based on UHPLC-Q-TOF-MS/MS reveals effects of genistein on reducing mycotoxin citrinin production by Monascus aurantiacus Li AS3.4384. LWT - Food Science and Technology, 2020, 130, 109613.	5.2	15
160	A thermophilic fungal GH36 α-galactosidase from Lichtheimia ramosa and its synergistic hydrolysis of locust bean gum. Carbohydrate Research, 2020, 491, 107911.	2.3	15
161	Effects of xanthan, guar and Mesona chinensis Benth gums on the pasting, rheological, texture properties and microstructure of pea starch gels. Food Hydrocolloids, 2022, 125, 107391.	10.7	15
162	Optimization and identification of non-extractable polyphenols in the dietary fiber of jackfruit (Artocarpus heterophyllus Lam.) pulp released by alkaline, acid and enzymatic hydrolysis: Content, composition and antioxidant activities. LWT - Food Science and Technology, 2021, 138, 110400.	5.2	14

#	Article	IF	CITATIONS
163	Effects of carboxymethyl chitosan on physicochemical, rheological properties and in vitro digestibility of yam starch. International Journal of Biological Macromolecules, 2021, 192, 537-545.	7.5	14
164	Investigation of thermal contaminants in coffee beans induced by roasting: A kinetic modeling approach. Food Chemistry, 2022, 378, 132063.	8.2	14
165	Formation mechanism of AGEs in Maillard reaction model systems containing ascorbic acid. Food Chemistry, 2022, 378, 132108.	8.2	14
166	Isolation, Characterization and Antioxidant Activity of Yam Polysaccharides. Foods, 2022, 11, 800.	4.3	14
167	Controlling Hopf–Hopf interaction bifurcations ofÂaÂtwo-degree-of-freedom self-excited system withÂdryÂfriction. Nonlinear Dynamics, 2011, 64, 49-57.	5.2	13
168	Electropolymerization of poly(methylene blue) on flower-like nickel-based MOFs used for ratiometric electrochemical sensing of total polyphenolic content in chrysanthemum tea. Analytical Methods, 2021, 13, 1154-1163.	2.7	13
169	Dry heat treatment induced the gelatinization, rheology and gel properties changes of chestnut starch. Current Research in Food Science, 2022, 5, 28-33.	5.8	13
170	Fabrication of Zein/ <i>Mesona chinensis</i> Polysaccharide Nanoparticles: Physical Characteristics and Delivery of Quercetin. ACS Applied Bio Materials, 2022, 5, 1817-1828.	4.6	13
171	Discrimination of Different <i>Ganoderma</i> Species and their Region Based on GC-MS Profiles of Sterols and Pattern Recognition Techniques. Analytical Letters, 2011, 44, 863-873.	1.8	12
172	Symmetry restoring bifurcations and quasiperiodic chaos induced by a new intermittency in a vibro-impact system. Chaos, 2016, 26, 113121.	2.5	12
173	1H NMR-based metabolomic study of the effects of flavonoids on citrinin production by Monascus. Food Research International, 2020, 137, 109532.	6.2	12
174	Simultaneous Determination of Tocopherols, Phytosterols, and Squalene in Vegetable Oils by High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Analytical Methods, 2021, 14, 1567-1576.	2.6	12
175	STRANGE NONCHAOTIC ATTRACTORS AND MULTISTABILITY IN A TWO-DEGREE-OF-FREEDOM QUASIPERIODICALLY FORCED VIBRO-IMPACT SYSTEM. Fractals, 2021, 29, 2150103.	3.7	12
176	"Dialogue―between Caco-2 and DCs regulated by Ganoderma atrum polysaccharide in intestinal-like Caco-2/DCs co-culture model. Food Research International, 2021, 144, 110310.	6.2	12
177	Mesona chinensis polysaccharides promote molecular crosslinking and gel formation of debranched waxy maize starch. LWT - Food Science and Technology, 2021, 148, 111773.	5.2	12
178	Evaluation of trans fatty acids, carbonyl compounds and bioactive minor components in commercial linseed oils. Food Chemistry, 2022, 369, 130930.	8.2	12
179	Role of genistein on the yield, structure and immunomodulatory activity of <i>Monascus</i> exopolysaccharides. Food and Function, 2022, 13, 1393-1407.	4.6	12
180	Curcumin-Loaded pH-Sensitive Biopolymer Hydrogels: Fabrication, Characterization, and Release Properties. ACS Food Science & Technology, 2022, 2, 512-520.	2.7	12

#	Article	IF	CITATIONS
181	Release characteristic and mechanism of bound polyphenols from insoluble dietary fiber of navel orange peel via mixed solid-state fermentation with Trichoderma reesei and Aspergillus niger. LWT - Food Science and Technology, 2022, 161, 113387.	5.2	12
182	Hopf-flip bifurcation of high dimensional maps and application to vibro-impact systems. Acta Mechanica Sinica/Lixue Xuebao, 2005, 21, 402-410.	3.4	11
183	Determining Lyapunov spectrum and Lyapunov dimension based on the Poincaré map in a vibro-impact system. Nonlinear Dynamics, 2012, 69, 743-753.	5.2	11
184	Dual modifications on the gelatinization, textural, and morphology properties of pea starch by sodium carbonate and Mesona chinensis polysaccharide. Food Hydrocolloids, 2020, 102, 105601.	10.7	11
185	Fetal and neonatal genistein exposure aggravates to interfere with ovarian follicle development of obese female mice induced by high-fat diet. Food and Chemical Toxicology, 2020, 135, 110982.	3.6	11
186	Comparative study of the effects of antioxidants on furan formation during thermal processing in model systems. LWT - Food Science and Technology, 2017, 75, 286-292.	5.2	10
187	Mixed solid-state fermentation for releasing bound polyphenols from insoluble dietary fiber in carrots <i>via Trichoderma viride</i> and <i>Aspergillus niger</i> . Food and Function, 2022, 13, 2044-2056.	4.6	10
188	Changes in polysaccharides structure and bioactivity during Mesona chinensis Benth storage. Current Research in Food Science, 2022, 5, 392-400.	5.8	10
189	Phytochemical composition, antioxidant activities and immunomodulatory effects of pigment extracts from Wugong Mountain purple red rice bran. Food Research International, 2022, 157, 111493.	6.2	10
190	Vibro-impact dynamics near a strong resonance point. Acta Mechanica Sinica/Lixue Xuebao, 2007, 23, 329-341.	3.4	9
191	Enzymatic synthesis of PEGylated lactide-diester-diol copolyesters for highly efficient targeted anticancer drug delivery. Materials Science and Engineering C, 2020, 115, 111125.	7.3	9
192	Investigation into the contents of nutrients, Nε-carboxymethyllysine and Nε-carboxyethyllysine in various commercially canned fishes to find the correlation between them. Journal of Food Composition and Analysis, 2021, 96, 103737.	3.9	9
193	Soluble dietary fiber from tea residues with inhibitory effects against acrylamide and 5-hydroxymethylfurfural formation in biscuits: The role of bound polyphenols. Food Research International, 2022, 159, 111595.	6.2	9
194	Generalized Hopf bifurcation of a non-smooth railway wheelset system. Nonlinear Dynamics, 2020, 100, 3277-3293.	5.2	8
195	Changes in fatty acids and formation of carbonyl compounds during frying of rice cakes and hairtails. Journal of Food Composition and Analysis, 2021, 101, 103937.	3.9	8
196	Protective Effect of Ganoderma atrum Polysaccharide on Acrolein-Induced Apoptosis and Autophagic Flux in IEC-6 Cells. Foods, 2022, 11, 240.	4.3	8
197	Quantitative assessment of furosine, furfurals, and advanced glycation end products in different types of commercially available cheeses. Food Control, 2022, 136, 108866.	5.5	7
198	The existence of strange nonchaotic attractors in the quasiperiodically forced Ricker family. Chaos, 2020, 30, 053124.	2.5	6

#	Article	IF	CITATIONS
199	RNA-seq based elucidation of mechanism underlying Mesona chinensis Benth polysaccharide protected H2O2-induced oxidative damage in LO2 cells. Food Research International, 2022, 157, 111383.	6.2	6
200	Acrolein Promotes Aging and Oxidative Stress via the Stress Response Factor DAF-16/FOXO in Caenorhabditis elegans. Foods, 2022, 11, 1590.	4.3	6
201	Recent advances in Mung bean polysaccharides: Extraction, physicochemical properties and biological activities. Process Biochemistry, 2022, 121, 248-256.	3.7	6
202	Symmetry, cusp bifurcation and chaos of an impact oscillator between two rigid sides. Applied Mathematics and Mechanics (English Edition), 2007, 28, 1109-1117.	3.6	5
203	Are Chinese edible oils safe? A survey of trans fatty acid contents in Chinese edible oils. Food Science and Biotechnology, 2016, 25, 631-636.	2.6	5
204	Characterization and identification of different Chinese fermented vinegars based on their volatile components. Journal of Food Biochemistry, 2021, 45, e13670.	2.9	5
205	Eggshell powder improves the gel properties and microstructure of pea starch-Mesona chinensis Benth polysaccharide gels. Food Hydrocolloids, 2022, 125, 107375.	10.7	5
206	Quasi-periodic solutions and homoclinic bifurcation in an impact inverted pendulum. Physica D: Nonlinear Phenomena, 2022, 434, 133210.	2.8	5
207	Symmetry and horseshoe in the model of bouncing ball. Science Bulletin, 1999, 44, 315-317.	1.7	4
208	Neimark-Sacker (N-S) bifurcation of oscillator with dry friction in 1:4 strong resonance. Applied Mathematics and Mechanics (English Edition), 2013, 34, 27-36.	3.6	4
209	Effect of roasting duration on the solubility, structure, and IgE-binding capacity of cashew nut proteins. Innovative Food Science and Emerging Technologies, 2021, 68, 102635.	5.6	4
210	Effects of processing parameters on furan formation in canned strawberry jam. Food Chemistry, 2021, 358, 129819.	8.2	4
211	Bioactive Components of <i>Mesona Blume</i> and Their Potential Health Benefits. Food Reviews International, 2022, 38, 70-85.	8.4	4
212	Codimension two bifurcation of a vibro-bounce system. Acta Mechanica Sinica/Lixue Xuebao, 2005, 21, 197-206.	3.4	3
213	Existence of invariant curves for a Fermi-type impact absorber. Nonlinear Dynamics, 2020, 99, 2647-2656.	5.2	3
214	Strange Nonchaotic Attractors From a Family of Quasiperiodically Forced Piecewise Linear Maps. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2150111.	1.7	3
215	Advances in the regulation of natural polysaccharides on human health: The role of apoptosis/autophagy pathway. Critical Reviews in Food Science and Nutrition, 2023, 63, 3931-3942.	10.3	3
216	Stability analysis of the breathing circle billiard. Chaos, Solitons and Fractals, 2021, 155, 111643.	5.1	3

#	Article	IF	CITATIONS
217	Effects of cooking factors on the formation of heterocyclic aromatic amines in fried beef patties. Journal of Food Processing and Preservation, 2022, 46, .	2.0	3
218	Codimension two bifurcation and chaos of a vibro-impact forming machine associated with 1:2 resonance case. Acta Mechanica Sinica/Lixue Xuebao, 2006, 22, 185-198.	3.4	2
219	On the Singularity Theory Applied in Rail Vehicle Bifurcation Problem. Journal of Computational and Nonlinear Dynamics, 2018, 13, .	1.2	2
220	Smale Horseshoe in a Piecewise Smooth Map. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950051.	1.7	2
221	The Existence of Aubry–Mather sets for the Fermi–Ulam Model. Qualitative Theory of Dynamical Systems, 2021, 20, 1.	1.7	2
222	On the global dynamical properties of a Fermi–Ulam model. Journal of Difference Equations and Applications, 0, , 1-10.	1.1	2
223	Improvement of Properties of Chestnut Starch Gels Using Dual Effects: Combination of the <i>Mesona chinensis</i> Benth Polysaccharide and Sodium Chloride. ACS Food Science & Technology, 2022, 2, 151-159.	2.7	2
224	Symbolic dynamics of Belykh-type maps. Applied Mathematics and Mechanics (English Edition), 2016, 37, 671-682.	3.6	1
225	Existence of Periodic Solutions in the Systems of the Billiard Type. Qualitative Theory of Dynamical Systems, 2021, 20, 1.	1.7	1
226	Periodic motions and bifurcations of vibro-impact systems near a strong resonance point. , 2006, , .		1
227	Structural Characterization and Health Effects of Polysaccharides from Momordica charantia on Diabetes Mellitus. , 2021, , 129-145.		0
228	Invariant torus and its destruction for an oscillator with dry friction. Nonlinear Dynamics, 2021, 104, 3467.	5.2	0
229	Exploring Acrylamide and 5-Hydroxymethylfurfural Formation in Glucose-Asparagine-Linoleic Acid System With a Kinetic Model Approach. Frontiers in Nutrition, 0, 9, .	3.7	0