Susan S Wallace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4265848/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological consequences of free radical-damaged DNA bases1,2 1Guest Editor: Miral Dizdaroglu 2This article is part of a series of reviews on "Oxidative DNA Damage and Repair.―The full list of papers may be found on the homepage of the journal Free Radical Biology and Medicine, 2002, 33, 1-14.	2.9	375
2	Base excision repair: A critical player in many games. DNA Repair, 2014, 19, 14-26.	2.8	327
3	A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII. DNA Repair, 2002, 1, 517-529.	2.8	298
4	Thymine glycols and urea residues in M13 DNA constitute replicative blocksin vitro. Nucleic Acids Research, 1985, 13, 8035-8052.	14.5	267
5	Base excision repair and cancer. Cancer Letters, 2012, 327, 73-89.	7.2	257
6	Characterization of the Escherichia coli x-ray endonuclease, endonuclease III. Biochemistry, 1983, 22, 4071-4081.	2.5	201
7	Isolation and Characterization of Endonuclease VIII from Escherichia coli. Biochemistry, 1994, 33, 1255-1264.	2.5	175
8	The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4925-4930.	7.1	169
9	Characterization of Escherichia coli Endonuclease VIII. Journal of Biological Chemistry, 1997, 272, 32230-32239.	3.4	146
10	The crystal structure of human endonuclease VIII-like 1 (NEIL1) reveals a zincless finger motif required for glycosylase activity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10284-10289.	7.1	132
11	The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures. Nucleic Acids Research, 2015, 43, 4039-4054.	14.5	129
12	A Role for the Fifth G-Track in G-Quadruplex Forming Oncogene Promoter Sequences during Oxidative Stress: Do These "Spare Tires―Have an Evolved Function?. ACS Central Science, 2015, 1, 226-233.	11.3	125
13	Saccharomyces cerevisiaeNtg1p and Ntg2p:Â Broad SpecificityN-Glycosylases for the Repair of Oxidative DNA Damage in the Nucleus and Mitochondriaâ€. Biochemistry, 1999, 38, 11298-11306.	2.5	110
14	Single Qdot-labeled glycosylase molecules use a wedge amino acid to probe for lesions while scanning along DNA. Nucleic Acids Research, 2011, 39, 7487-7498.	14.5	107
15	Multiply damaged sites in DNA: interactions with Escherichia coli endonucleases III and VIII. Nucleic Acids Research, 1998, 26, 932-941.	14.5	103
16	Neil3 and NEIL1 DNA Glycosylases Remove Oxidative Damages from Quadruplex DNA and Exhibit Preferences for Lesions in the Telomeric Sequence Context. Journal of Biological Chemistry, 2013, 288, 27263-27272.	3.4	103
17	Two glycosylase families diffusively scan DNA using a wedge residue to probe for and identify oxidatively damaged bases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2091-9.	7.1	92
18	The enigma of endonuclease VIII. DNA Repair, 2003, 2, 441-453.	2.8	89

SUSAN S WALLACE

#	Article	IF	CITATIONS
19	DNA glycosylases search for and remove oxidized DNA bases. Environmental and Molecular Mutagenesis, 2013, 54, 691-704.	2.2	87
20	Nucleosome Disruption by DNA Ligase III-XRCC1 Promotes Efficient Base Excision Repair. Molecular and Cellular Biology, 2011, 31, 4623-4632.	2.3	80
21	The Fpg/Nei Family of DNA Glycosylases. Progress in Molecular Biology and Translational Science, 2012, 110, 71-91.	1.7	78
22	Rules of engagement for base excision repair in chromatin. Journal of Cellular Physiology, 2013, 228, 258-266.	4.1	75
23	Initiation of Base Excision Repair of Oxidative Lesions in Nucleosomes by the Human, Bifunctional DNA Glycosylase NTH1. Molecular and Cellular Biology, 2007, 27, 8442-8453.	2.3	72
24	Neil3, the final frontier for the DNA glycosylases that recognize oxidative damage. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 743-744, 4-11.	1.0	72
25	NEIL3 Repairs Telomere Damage during S Phase to Secure Chromosome Segregation at Mitosis. Cell Reports, 2017, 20, 2044-2056.	6.4	57
26	Nucleosomes Suppress the Formation of Double-strand DNA Breaks during Attempted Base Excision Repair of Clustered Oxidative Damages. Journal of Biological Chemistry, 2014, 289, 19881-19893.	3.4	56
27	Cooperation of the NEIL3 and Fanconi anemia/BRCA pathways in interstrand crosslink repair. Nucleic Acids Research, 2020, 48, 3014-3028.	14.5	53
28	Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1. DNA Repair, 2010, 9, 134-143.	2.8	51
29	Structural Characterization of a Mouse Ortholog of Human NEIL3 with a Marked Preference for Single-Stranded DNA. Structure, 2013, 21, 247-256.	3.3	51
30	Studies on Escherichia coli X-Ray Endonuclease Specificity: Roles of Hydroxyl and Reducing Radicals in the Production of DNA Lesions. Radiation Research, 1977, 69, 328.	1.5	48
31	Structural Characterization of Viral Ortholog of Human DNA Glycosylase NEIL1 Bound to Thymine Glycol or 5-Hydroxyuracil-containing DNA. Journal of Biological Chemistry, 2012, 287, 4288-4298.	3.4	48
32	Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?. Free Radical Biology and Medicine, 2017, 107, 170-178.	2.9	48
33	Germ-line variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14314-14319.	7.1	47
34	Structural and biochemical studies of a plant formamidopyrimidine-DNA glycosylase reveal why eukaryotic Fpg glycosylases do not excise 8-oxoguanine. DNA Repair, 2012, 11, 714-725.	2.8	46
35	The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts. DNA Repair, 2010, 9, 177-190.	2.8	43
36	Structural Characterization of a Viral NEIL1 Ortholog Unliganded and Bound to Abasic Site-containing DNA. Journal of Biological Chemistry, 2009, 284, 26174-26183.	3.4	41

SUSAN S WALLACE

#	Article	IF	CITATIONS
37	Genome and cancer single nucleotide polymorphisms of the human NEIL1 DNA glycosylase: Activity, structure, and the effect of editing. DNA Repair, 2014, 14, 17-26.	2.8	38
38	Human endonuclease VIII-like (NEIL) proteins in the giant DNA Mimivirus. DNA Repair, 2007, 6, 1629-1641.	2.8	36
39	A functional assay–based procedure to classify mismatch repair gene variants in Lynch syndrome. Genetics in Medicine, 2019, 21, 1486-1496.	2.4	36
40	Contribution of DNA unwrapping from histone octamers to the repair of oxidatively damaged DNA in nucleosomes. DNA Repair, 2013, 12, 964-971.	2.8	31
41	Insights into the glycosylase search for damage from single-molecule fluorescence microscopy. DNA Repair, 2014, 20, 23-31.	2.8	30
42	The Human Ligase IIIα-XRCC1 Protein Complex Performs DNA Nick Repair after Transient Unwrapping of Nucleosomal DNA. Journal of Biological Chemistry, 2017, 292, 5227-5238.	3.4	29
43	The Tumor-Associated Variant RAD51 G151D Induces a Hyper-Recombination Phenotype. PLoS Genetics, 2016, 12, e1006208.	3.5	26
44	Base Excision Repair Variants in Cancer. Methods in Enzymology, 2017, 591, 119-157.	1.0	26
45	Oxidative DNA Glycosylases: Recipes from Cloning to Characterization. Methods in Enzymology, 2006, 408, 15-33.	1.0	23
46	The lyase activity of bifunctional DNA glycosylases and the 3′-diesterase activity of APE1 contribute to the repair of oxidized bases in nucleosomes. Nucleic Acids Research, 2019, 47, 2922-2931.	14.5	23
47	Unhooking of an interstrand cross-link at DNA fork structures by the DNA glycosylase NEIL3. DNA Repair, 2020, 86, 102752.	2.8	23
48	Clostridium acetobutylicum 8-Oxoguanine DNA Glycosylase (Ogg) Differs from Eukaryotic Oggs with Respect to Opposite Base Discrimination. Biochemistry, 2008, 47, 7626-7636.	2.5	22
49	The C-terminal Lysine of Ogg2 DNA Glycosylases is a Major Molecular Determinant for Guanine/8-Oxoguanine Distinction. Journal of Molecular Biology, 2010, 397, 46-56.	4.2	21
50	Structural investigation of a viral ortholog of human NEIL2/3 DNA glycosylases. DNA Repair, 2013, 12, 1062-1071.	2.8	21
51	Crystal Structures of Two Archaeal 8-Oxoguanine DNA Glycosylases Provide Structural Insight into Guanine/8-Oxoguanine Distinction. Structure, 2009, 17, 703-712.	3.3	20
52	The NEIL1 G83D germline DNA glycosylase variant induces genomic instability and cellular transformation. Oncotarget, 2017, 8, 85883-85895.	1.8	17
53	Structural Characterization of Clostridium acetobutylicum 8-Oxoguanine DNA Glycosylase in Its Apo Form and in Complex with 8-Oxodeoxyguanosine. Journal of Molecular Biology, 2009, 387, 669-679.	4.2	14
54	Structural basis for the lack of opposite base specificity of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase. DNA Repair, 2009, 8, 1283-1289.	2.8	13

SUSAN S WALLACE

#	Article	IF	CITATIONS
55	Visualizing the search for radiation-damaged DNA bases in real time. Radiation Physics and Chemistry, 2016, 128, 126-133.	2.8	13
56	Single molecule glycosylase studies with engineered 8-oxoguanine DNA damage sites show functional defects of a MUTYH polyposis variant. Nucleic Acids Research, 2019, 47, 3058-3071.	14.5	13
57	Destabilization of the PCNA trimer mediated by its interaction with the NEIL1 DNA glycosylase. Nucleic Acids Research, 2016, 45, gkw1282.	14.5	11
58	Caught in motion: human NTHL1 undergoes interdomain rearrangement necessary for catalysis. Nucleic Acids Research, 2021, 49, 13165-13178.	14.5	11
59	Consequences and Repair of Oxidative DNA Damage. Issues in Toxicology, 2012, , 115-159.	0.1	10
60	The Phosphodiester Bond 3â€~ to a Deoxyuridine Residue Is Crucial for Substrate Binding for Uracil DNAN-Glycosylaseâ€. Biochemistry, 1996, 35, 16630-16637.	2.5	6
61	Probing the activity of NTHL1 orthologs by targeting conserved amino acid residues. DNA Repair, 2017, 53, 43-51.	2.8	5
62	Molecular radiobiology and the origins of the base excision repair pathway: an historical perspective. International Journal of Radiation Biology, 2023, 99, 891-902.	1.8	5
63	Personal reflections of a woman scientist growing up in a man's world. DNA Repair, 2013, 12, 313-325.	2.8	1
64	Consequences and repair of radiation-induced DNA damage: fifty years of fun questions and answers. International Journal of Radiation Biology, 2022, 98, 367-382.	1.8	1
65	The DNA Glycosylases that Recognize and Remove Free Radical-damaged Pyrimidines. , 2017, , 117-188.		0
66	Mouse Embryonic Fibroblasts Isolated From Nthl1 D227Y Knockin Mice Exhibit Defective DNA Repair and Increased Genome Instability. DNA Repair, 2022, 109, 103247.	2.8	0