Christian Rosenmund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4265492/publications.pdf

Version: 2024-02-01

150 papers

22,440 citations

70 h-index 140 g-index

177 all docs

177 docs citations

times ranked

177

17641 citing authors

#	Article	IF	Citations
1	Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature, 2010, 468, 263-269.	27.8	1,042
2	Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 2017, 357, .	12.6	978
3	Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses. Neuron, 1996, 16, 1197-1207.	8.1	935
4	Synaptotagmin I functions as a calcium regulator of release probability. Nature, 2001, 410, 41-49.	27.8	857
5	Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature, 2000, 407, 189-194.	27.8	771
6	The Tetrameric Structure of a Glutamate Receptor Channel. Science, 1998, 280, 1596-1599.	12.6	706
7	Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature, 1999, 400, 457-461.	27.8	664
8	Nonuniform probability of glutamate release at a hippocampal synapse. Science, 1993, 262, 754-757.	12.6	610
9	Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell, 1994, 79, 365-375.	28.9	595
10	Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9037-9042.	7.1	504
11	Ultrafast endocytosis at mouse hippocampal synapses. Nature, 2013, 504, 242-247.	27.8	502
12	Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron, 1993, 10, 805-814.	8.1	498
13	Complexins Regulate a Late Step in Ca2+-Dependent Neurotransmitter Release. Cell, 2001, 104, 71-81.	28.9	465
14	\hat{l}^2 Phorbol Ester- and Diacylglycerol-Induced Augmentation of Transmitter Release Is Mediated by Munc13s and Not by PKCs. Cell, 2002, 108, 121-133.	28.9	451
15	Synaptic vesicle fusion. Nature Structural and Molecular Biology, 2008, 15, 665-674.	8.2	451
16	MeCP2 Controls Excitatory Synaptic Strength by Regulating Glutamatergic Synapse Number. Neuron, 2007, 56, 58-65.	8.1	439
17	An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7158-7163.	7.1	438
18	Functional Interaction of the Active Zone Proteins Munc13-1 and RIM1 in Synaptic Vesicle Priming. Neuron, 2001, 30, 183-196.	8.1	372

#	Article	IF	CITATIONS
19	Anchoring of protein kinase A is required for modulation of AMPA/kainate receptors on hippocampal neurons. Nature, 1994, 368, 853-856.	27.8	364
20	Identification of Differentiation-Associated Brain-Specific Phosphate Transporter as a Second Vesicular Glutamate Transporter (VGLUT2). Journal of Neuroscience, 2001, 21, RC182-RC182.	3.6	358
21	The Morphological and Molecular Nature of Synaptic Vesicle Priming at Presynaptic Active Zones. Neuron, 2014, 84, 416-431.	8.1	344
22	A Shared Vesicular Carrier Allows Synaptic Corelease of GABA and Glycine. Neuron, 2006, 50, 575-587.	8.1	331
23	Move over protein kinase C, you've got company: alternative cellular effectors of diacylglycerol and phorbol esters. Journal of Cell Science, 2002, 115, 4399-4411.	2.0	325
24	Differential Control of Vesicle Priming and Short-Term Plasticity by Munc13 Isoforms. Neuron, 2002, 33, 411-424.	8.1	302
25	Clathrin regenerates synaptic vesicles from endosomes. Nature, 2014, 515, 228-233.	27.8	272
26	A Complete Genetic Analysis of Neuronal Rab3 Function. Journal of Neuroscience, 2004, 24, 6629-6637.	3.6	258
27	Calmodulin and Munc13 Form a Ca2+ Sensor/Effector Complex that Controls Short-Term Synaptic Plasticity. Cell, 2004, 118, 389-401.	28.9	256
28	The Synaptic Vesicle Protein CSPα Prevents Presynaptic Degeneration. Neuron, 2004, 42, 237-251.	8.1	254
29	Conformational Switch of Syntaxin-1 Controls Synaptic Vesicle Fusion. Science, 2008, 321, 1507-1510.	12.6	241
30	A Point Mutation in the Glutamate Binding Site Blocks Desensitization of AMPA Receptors. Neuron, 1998, 21, 907-918.	8.1	233
31	Functional Inactivation of a Fraction of Excitatory Synapses in Mice Deficient for the Active Zone Protein Bassoon. Neuron, 2003, 37, 787-800.	8.1	226
32	Regulation of transmitter release by Unc-13 and its homologues. Current Opinion in Neurobiology, 2000, 10, 303-311.	4.2	204
33	Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis. Nature Structural and Molecular Biology, 2010, 17, 280-288.	8.2	202
34	Distinct domains of complexin I differentially regulate neurotransmitter release. Nature Structural and Molecular Biology, 2007, 14, 949-958.	8.2	198
35	Heteromeric AMPA Receptors Assemble with a Preferred Subunit Stoichiometry and Spatial Arrangement. Neuron, 2001, 32, 841-853.	8.1	192
36	Munc13-1 C1 Domain Activation Lowers the Energy Barrier for Synaptic Vesicle Fusion. Journal of Neuroscience, 2007, 27, 1200-1210.	3.6	186

#	Article	IF	Citations
37	Clathrin/AP-2 Mediate Synaptic Vesicle Reformation from Endosome-like Vacuoles but Are Not Essential for Membrane Retrieval at Central Synapses. Neuron, 2014, 82, 981-988.	8.1	181
38	Structurally and functionally unique complexins at retinal ribbon synapses. Journal of Cell Biology, 2005, 169, 669-680.	5.2	176
39	Regulation of Rap2A by the Ubiquitin Ligase Nedd4-1 Controls Neurite Development. Neuron, 2010, 65, 358-372.	8.1	176
40	Vesicular Glutamate Transporter VGLUT2 Expression Levels Control Quantal Size and Neuropathic Pain. Journal of Neuroscience, 2006, 26, 12055-12066.	3 . 6	175
41	A minimal domain responsible for Munc13 activity. Nature Structural and Molecular Biology, 2005, 12, 1017-1018.	8.2	170
42	Rab3 Superprimes Synaptic Vesicles for Release: Implications for Short-Term Synaptic Plasticity. Journal of Neuroscience, 2006, 26, 1239-1246.	3.6	160
43	Synaptotagmin-1 drives synchronous Ca2+-triggered fusion by C2B-domain-mediated synaptic-vesicle-membrane attachment. Nature Neuroscience, 2018, 21, 33-40.	14.8	148
44	Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18664-18669.	7.1	147
45	Synaptic NMDA receptor channels have a low open probability. Journal of Neuroscience, 1995, 15, 2788-2795.	3.6	144
46	The effects of temperature on vesicular supply and release in autaptic cultures of rat and mouse hippocampal neurons. Journal of Physiology, 2002, 539, 523-535.	2.9	138
47	Should I stop or should I go? The role of complexin in neurotransmitter release. Nature Reviews Neuroscience, 2016, 17, 118-125.	10.2	138
48	Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7875-7880.	7.1	130
49	Structure/Function Analysis of Ca ²⁺ Binding to the C ₂ A Domain of Synaptotagmin 1. Journal of Neuroscience, 2002, 22, 8438-8446.	3.6	122
50	Molecular mechanisms of active zone function. Current Opinion in Neurobiology, 2003, 13, 509-519.	4.2	122
51	Sr2+ Binding to the Ca2+ Binding Site of the Synaptotagmin 1 C2B Domain Triggers Fast Exocytosis without Stimulating SNARE Interactions. Neuron, 2003, 37, 99-108.	8.1	121
52	Differences in Ca 2+ buffering properties between excitatory and inhibitory hippocampal neurons from the rat. Journal of Physiology, 2000, 525, 405-418.	2.9	120
53	Rundown of Nâ€methylâ€Dâ€aspartate channels during wholeâ€cell recording in rat hippocampal neurons: role of Ca2+ and ATP Journal of Physiology, 1993, 470, 705-729.	2.9	118
54	The Janus-faced nature of the C2B domain is fundamental for synaptotagmin-1 function. Nature Structural and Molecular Biology, 2008, 15, 1160-1168.	8.2	118

#	Article	IF	Citations
55	Phosphatidylinositol Phosphates as Co-activators of Ca2+ Binding to C2 Domains of Synaptotagmin 1^* . Journal of Biological Chemistry, 2006, 281, 15845-15852.	3.4	115
56	Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion. EMBO Journal, 2012, 32, 159-171.	7.8	114
57	Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity. Nature Structural and Molecular Biology, 2010, 17, 568-575.	8.2	113
58	Optogenetic acidification of synaptic vesicles and lysosomes. Nature Neuroscience, 2015, 18, 1845-1852.	14.8	113
59	Conformational restriction blocks glutamate receptor desensitization. Nature Structural and Molecular Biology, 2006, 13, 1120-1127.	8.2	106
60	A Gain-of-Function Mutation in Synaptotagmin-1 Reveals a Critical Role of Ca2+-Dependent Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor Complex Binding in Synaptic Exocytosis. Journal of Neuroscience, 2006, 26, 12556-12565.	3.6	103
61	Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of Munc13-1 C1C2BMUN. ELife, 2017, 6, .	6.0	103
62	Tilting the Balance between Facilitatory and Inhibitory Functions of Mammalian and Drosophila Complexins Orchestrates Synaptic Vesicle Exocytosis. Neuron, 2009, 64, 367-380.	8.1	101
63	Interplay between VGLUT Isoforms and Endophilin A1 Regulates Neurotransmitter Release and Short-Term Plasticity. Neuron, 2011, 69, 1147-1159.	8.1	99
64	Functional synergy between the Munc13 C-terminal C1 and C2 domains. ELife, 2016, 5, .	6.0	96
65	N-Glycosylation Is Essential for Vesicular Targeting of Synaptotagmin 1. Neuron, 2004, 41, 85-99.	8.1	95
66	Subunit Composition and Alternative Splicing Regulate Membrane Delivery of Kainate Receptors. Journal of Neuroscience, 2004, 24, 2506-2515.	3.6	87
67	Unique Luminal Localization of VGAT-C Terminus Allows for Selective Labeling of Active Cortical GABAergic Synapses. Journal of Neuroscience, 2008, 28, 13125-13131.	3.6	87
68	Molecular mechanisms governing Ca2+ regulation of evoked and spontaneous release. Nature Neuroscience, 2015, 18, 935-941.	14.8	86
69	RIM-binding protein 2 regulates release probability by fine-tuning calcium channel localization at murine hippocampal synapses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11615-11620.	7.1	86
70	Synaptojanin and Endophilin Mediate Neck Formation during Ultrafast Endocytosis. Neuron, 2018, 98, 1184-1197.e6.	8.1	85
71	Membrane bridging by Munc13-1 is crucial for neurotransmitter release. ELife, 2019, 8, .	6.0	84
72	Heterodimerization of Munc13 C2A domain with RIM regulates synaptic vesicle docking and priming. Nature Communications, 2017, 8, 15293.	12.8	80

#	Article	IF	CITATIONS
73	Interdomain Interactions in AMPA and Kainate Receptors Regulate Affinity for Glutamate. Journal of Neuroscience, 2006, 26, 7650-7658.	3.6	79
74	Molecular Dynamics of a Presynaptic Active Zone Protein Studied in Munc13-1-Enhanced Yellow Fluorescent Protein Knock-In Mutant Mice. Journal of Neuroscience, 2006, 26, 13054-13066.	3.6	77
75	Distinct Functions of Syntaxin-1 in Neuronal Maintenance, Synaptic Vesicle Docking, and Fusion in Mouse Neurons. Journal of Neuroscience, 2016, 36, 7911-7924.	3.6	77
76	Vesicular Synaptobrevin/VAMP2 Levels Guarded by AP180 Control Efficient Neurotransmission. Neuron, 2015, 88, 330-344.	8.1	76
77	Vesicular Glutamate Transporter Expression Level Affects Synaptic Vesicle Release Probability at Hippocampal Synapses in Culture. Journal of Neuroscience, 2014, 34, 11781-11791.	3.6	7 5
78	Mechanism and impact of allosteric AMPA receptor modulation by the AmpakineTM CX546. Neuropharmacology, 2001, 41, 650-663.	4.1	69
79	Re-examining how complexin inhibits neurotransmitter release. ELife, 2014, 3, e02391.	6.0	68
80	Titration of Syntaxin1 in Mammalian Synapses Reveals Multiple Roles in Vesicle Docking, Priming, and Release Probability. Journal of Neuroscience, 2013, 33, 16698-16714.	3.6	63
81	Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. Cell, 2019, 179, 498-513.e22.	28.9	59
82	Layer 6b Is Driven by Intracortical Long-Range Projection Neurons. Cell Reports, 2020, 30, 3492-3505.e5.	6.4	55
83	Stability of ligand-binding domain dimer assembly controls kainate receptor desensitization. EMBO Journal, 2009, 28, 1518-1530.	7.8	54
84	Light-Activated ROS Production Induces Synaptic Autophagy. Journal of Neuroscience, 2019, 39, 2163-2183.	3.6	53
85	Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate. ELife, 2015, 4, e05531.	6.0	50
86	Cooperative binding mitigates the high-dose hook effect. BMC Systems Biology, 2017, 11, 74.	3.0	46
87	RIM-BP2 primes synaptic vesicles via recruitment of Munc13-1 at hippocampal mossy fiber synapses. ELife, 2019, 8, .	6.0	46
88	Reinvestigation of the Role of Snapin in Neurotransmitter Release. Journal of Biological Chemistry, 2004, 279, 26251-26256.	3.4	45
89	ELKS1 localizes the synaptic vesicle priming protein bMunc13-2 to a specific subset of active zones. Journal of Cell Biology, 2017, 216, 1143-1161.	5.2	43
90	A Trio of Active Zone Proteins Comprised of RIM-BPs, RIMs, and Munc13s Governs Neurotransmitter Release. Cell Reports, 2020, 32, 107960.	6.4	43

#	Article	IF	CITATIONS
91	Parkin contributes to synaptic vesicle autophagy in Bassoon-deficient mice. ELife, 2020, 9, .	6.0	42
92	RasGRF2 Rac-GEF activity couples NMDA receptor calcium flux to enhanced synaptic transmission. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14462-14467.	7.1	41
93	Synaptobrevin 1 mediates vesicle priming and evoked release in a subpopulation of hippocampal neurons. Journal of Neurophysiology, 2014, 112, 1559-1565.	1.8	38
94	Dynamin is primed at endocytic sites for ultrafast endocytosis. Neuron, 2022, 110, 2815-2835.e13.	8.1	38
95	Loss of MeCP2 disrupts cell autonomous and autocrine BDNF signaling in mouse glutamatergic neurons. ELife, 2016, 5, .	6.0	35
96	Complexin Suppresses Spontaneous Exocytosis by Capturing the Membrane-Proximal Regions of VAMP2 and SNAP25. Cell Reports, 2020, 32, 107926.	6.4	33
97	C-terminal ECFP Fusion Impairs Synaptotagmin 1 Function. Journal of Biological Chemistry, 2005, 280, 5089-5100.	3.4	32
98	α8â€Integrins are required for hippocampal longâ€term potentiation but not for hippocampalâ€dependent learning. Genes, Brain and Behavior, 2010, 9, 402-410.	2,2	31
99	Syntaxin 1B is important for mouse postnatal survival and proper synaptic function at the mouse neuromuscular junctions. Journal of Neurophysiology, 2015, 114, 2404-2417.	1.8	31
100	The rate of aldehyde fixation of the exocytotic machinery in ultured hippocampal synapses. Journal of Neuroscience Methods, $1997, 76, 1-5$.	2.5	30
101	Structural and Mutational Analysis of Functional Differentiation between Synaptotagmins-1 and -7. PLoS ONE, 2010, 5, e12544.	2.5	28
102	Co-release of glutamate and GABA from single vesicles in GABAergic neurons exogenously expressing VGLUT3. Frontiers in Synaptic Neuroscience, 2015, 7, 16.	2.5	27
103	Critical role for Piccolo in synaptic vesicle retrieval. ELife, 2019, 8, .	6.0	27
104	VGluT2 Expression in Dopamine Neurons Contributes to Postlesional Striatal Reinnervation. Journal of Neuroscience, 2020, 40, 8262-8275.	3.6	26
105	Disentangling the Roles of RIM and Munc13 in Synaptic Vesicle Localization and Neurotransmission. Journal of Neuroscience, 2020, 40, 9372-9385.	3.6	26
106	The Axonal Membrane Protein PRG2 Inhibits PTEN and Directs Growth to Branches. Cell Reports, 2019, 29, 2028-2040.e8.	6.4	25
107	NOMA-GAP/ARHGAP33 regulates synapse development and autistic-like behavior in the mouse. Molecular Psychiatry, 2015, 20, 1120-1131.	7.9	23
108	Control of neurotransmitter release by two distinct membrane-binding faces of the Munc13-1 C1C2B region. ELife, 2021, 10, .	6.0	23

#	Article	IF	CITATIONS
109	Investigation of Synapse Formation and Function in a Glutamatergic-GABAergic Two-Neuron Microcircuit. Journal of Neuroscience, 2014, 34, 855-868.	3.6	22
110	Activation of metabotropic GABA receptors increases the energy barrier for vesicle fusion. Journal of Cell Science, 2011, 124, 3066-3073.	2.0	21
111	Nanometer-Resolution Fluorescence Electron Microscopy (Nano-EM) in Cultured Cells. Methods in Molecular Biology, 2014, 1117, 503-526.	0.9	21
112	Biophysical properties of presynaptic short-term plasticity in hippocampal neurons: insights from electrophysiology, imaging and mechanistic models. Frontiers in Cellular Neuroscience, 2014, 8, 141.	3.7	18
113	Glutamatergic Innervation onto Striatal Neurons Potentiates GABAergic Synaptic Output. Journal of Neuroscience, 2019, 39, 4448-4460.	3.6	18
114	Biallelic variants in TSPOAP1, encoding the active-zone protein RIMBP1, cause autosomal recessive dystonia. Journal of Clinical Investigation, 2021, 131, .	8.2	18
115	Increased Thalamocortical Synaptic Response and Decreased Layer IV Innervation in GAP-43 Knockout Mice. Journal of Neurophysiology, 2007, 98, 1610-1625.	1.8	16
116	Deconstructing Synaptotagmin-1's Distinct Roles in Synaptic Vesicle Priming and Neurotransmitter Release. Journal of Neuroscience, 2022, 42, 2856-2871.	3.6	16
117	Characterization of a Human Point Mutation of VGLUT3 (p.A211V) in the Rodent Brain Suggests a Nonuniform Distribution of the Transporter in Synaptic Vesicles. Journal of Neuroscience, 2017, 37, 4181-4199.	3.6	15
118	Calcium-Independent Exo-endocytosis Coupling at Small Central Synapses. Cell Reports, 2019, 29, 3767-3774.e3.	6.4	15
119	Epilepsy-causing STX1B mutations translate altered protein functions into distinct phenotypes in mouse neurons. Brain, 2020, 143, 2119-2138.	7.6	15
120	ORP/Osh mediate cross-talk between ER-plasma membrane contact site components and plasma membrane SNAREs. Cellular and Molecular Life Sciences, 2021, 78, 1689-1708.	5 . 4	15
121	Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses. Molecular Psychiatry, 2021, 26, 6253-6268.	7.9	15
122	SV2. Neuron, 1999, 24, 766-768.	8.1	14
123	CtBP1-Mediated Membrane Fission Contributes to Effective Recycling of Synaptic Vesicles. Cell Reports, 2020, 30, 2444-2459.e7.	6.4	14
124	SynaptoPAC, an optogenetic tool for induction of presynaptic plasticity. Journal of Neurochemistry, 2021, 156, 324-336.	3.9	14
125	Reexamination of N-terminal domains of syntaxin-1 in vesicle fusion from central murine synapses. ELife, 2021, 10 , .	6.0	13
126	Patient-Derived Anti-NMDAR Antibody Disinhibits Cortical Neuronal Networks through Dysfunction of Inhibitory Neuron Output. Journal of Neuroscience, 2022, 42, 3253-3270.	3.6	12

#	Article	IF	Citations
127	Autaptic cultures of human induced neurons as a versatile platform for studying synaptic function and neuronal morphology. Scientific Reports, 2019, 9, 4890.	3.3	11
128	How to be desensitized. Nature, 2002, 417, 238-239.	27.8	10
129	Syntaxin-1A modulates vesicle fusion in mammalian neurons via juxtamembrane domain dependent palmitoylation of its transmembrane domain. ELife, $0,11,.$	6.0	10
130	Synapses as Therapeutic Targets for Autism Spectrum Disorders: An International Symposium Held in Pavia on July 4th, 2014. Frontiers in Cellular Neuroscience, 2014, 8, 309.	3.7	9
131	On the Brink: A New Synaptic Vesicle Release Model at the Calyx of Held. Neuron, 2015, 85, 6-8.	8.1	9
132	Differential pH Dynamics in Synaptic Vesicles From Intact Glutamatergic and GABAergic Synapses. Frontiers in Synaptic Neuroscience, 2018, 10, 44.	2.5	9
133	Impaired inhibitory GABAergic synaptic transmission and transcription studied in single neurons by Patch-seq in Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
134	Altered inhibition and excitation in neocortical circuits in congenital microcephaly. Neurobiology of Disease, 2019, 129, 130-143.	4.4	7
135	LSP5-2157 a new inhibitor of vesicular glutamate transporters. Neuropharmacology, 2020, 164, 107902.	4.1	7
136	The Headache of a Hyperactive Calcium Channel. Neuron, 2009, 61, 653-654.	8.1	5
137	The Morphological and Molecular Nature of Synaptic Vesicle Priming at Presynaptic Active Zones. Neuron, 2014, 84, 882.	8.1	4
138	Catching Up with Ultrafast Endocytosis. Neuron, 2016, 90, 423-424.	8.1	4
139	Ligand-Dependent Opening of the Multiple AMPA Receptor Conductance States: A Concerted Model. PLoS ONE, 2015, 10, e0116616.	2.5	3
140	Endocytosis gets in tune with action potential bursts. ELife, 2013, 2, e01234.	6.0	1
141	Functional Architecture of the Synaptic Transducers at a Central Glutamatergic Synapse. SSRN Electronic Journal, 0, , .	0.4	1
142	Regulation of dendritic development by E3 ubiquitin ligase Nedd4. Neuroscience Research, 2007, 58, S39.	1.9	0
143	Structure And Stability Of Ligand Binding Core Dimer Assembly Controls Desensitization In A Kainate Receptor. Biophysical Journal, 2009, 96, 491a.	0.5	0
144	New Concepts for Presynaptic Optogenetics. Biophysical Journal, 2014, 106, 383a.	0.5	0

#	Article	IF	CITATIONS
145	Ultrafast Recycling of Synaptic Vesicles. Biophysical Journal, 2015, 108, 10a.	0.5	0
146	A Single Human Neuron Approach to Synapse Function. Trends in Molecular Medicine, 2019, 25, 563-565.	6.7	0
147	Mechanistic insights into neurotransmitter release and presynaptic 3 plasticity from the crystal structure of Munc13-1 C1C2BMUN. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, a33-a33.	0.1	0
148	Insights into neurotransmitter release from the structure of Munc13-1 C1C2BMUN. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C103-C103.	0.1	0
149	Synapses, networks, brain development – funding basic neuroscience research in Germany by the Schram Foundation. Neuroforum, 2020, 26, 195-207.	0.3	0
150	CB1 receptor activation rapidly alters synaptic vesicle numbers in mouse hippocampal synapses. Molecular Psychiatry, 2021, 26, 6103-6103.	7.9	0