Javier Goicoechea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/426518/publications.pdf

Version: 2024-02-01

75 papers

2,300 citations

28 h-index 214721 47 g-index

76 all docs

76
docs citations

76 times ranked 2577 citing authors

#	Article	IF	CITATIONS
1	Nanomaterials for Functional Textiles and Fibers. Nanoscale Research Letters, 2015, 10, 501.	3.1	219
2	Optical sensors based on lossy-mode resonances. Sensors and Actuators B: Chemical, 2017, 240, 174-185.	4.0	182
3	Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red. Sensors and Actuators B: Chemical, 2008, 132, 305-311.	4.0	123
4	Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating. Sensors and Actuators B: Chemical, 2016, 227, 135-141.	4.0	115
5	Vibration Detection Using Optical Fiber Sensors. Journal of Sensors, 2010, 2010, 1-12.	0.6	93
6	Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles. Sensors and Actuators B: Chemical, 2012, 173, 244-249.	4.0	84
7	An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles. Nanoscale Research Letters, 2011, 6, 305.	3.1	80
8	Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings. Journal of Sensors, 2015, 2015, 1-18.	0.6	70
9	Utilization of white light interferometry in pH sensing applications by mean of the fabrication of nanostructured cavities. Sensors and Actuators B: Chemical, 2009, 138, 613-618.	4.0	67
10	Detection of bacterial endotoxin in food: New planar interdigital sensors based approach. Journal of Food Engineering, 2013, 114, 346-360.	2.7	64
11	Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles. Nanoscale Research Letters, 2013, 8, 101.	3.1	61
12	Quantum Dots-Based Optical Fiber Temperature Sensors Fabricated by Layer-by-Layer. IEEE Sensors Journal, 2006, 6, 1378-1379.	2.4	56
13	A self-referenced optical colorimetric sensor based on silver and gold nanoparticles for quantitative determination of hydrogen peroxide. Sensors and Actuators B: Chemical, 2017, 251, 624-631.	4.0	55
14	Optical Fiber Sensors Based on Polymeric Sensitive Coatings. Polymers, 2018, 10, 280.	2.0	55
15	A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO ₂ nanospheres. Measurement Science and Technology, 2009, 20, 034002.	1.4	54
16	Layer-by-Layer Nano-assembly: A Powerful Tool for Optical Fiber Sensing Applications. Sensors, 2019, 19, 683.	2.1	52
17	Simultaneous Measurement of Humidity and Temperature Based on an SiO\$_{2}\$-Nanospheres Film Deposited on a Long-Period Grating In-Line With a Fiber Bragg Grating. IEEE Sensors Journal, 2011, 11, 162-166.	2.4	50
18	Micro and Nanostructured Materials for the Development of Optical Fibre Sensors. Sensors, 2017, 17, 2312.	2.1	48

#	Article	IF	CITATIONS
19	Photonic Crystal Fiber Temperature Sensor Based on Quantum Dot Nanocoatings. Journal of Sensors, 2009, 2009, 1-6.	0.6	46
20	Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings. Sensors and Actuators B: Chemical, 2007, 128, 138-144.	4.0	44
21	A Lossy Mode Resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing. Sensors and Actuators B: Chemical, 2013, 187, 40-44.	4.0	44
22	Optical fiber sensors based on gold nanorods embedded in polymeric thin films. Sensors and Actuators B: Chemical, 2018, 255, 2105-2112.	4.0	37
23	Electrospun nanofiber mats for evanescent optical fiber sensors. Sensors and Actuators B: Chemical, 2013, 176, 569-576.	4.0	36
24	Optical fiber resonance-based pH sensors using gold nanoparticles into polymeric layer-by-layer coatings. Microsystem Technologies, 2016, 22, 1821-1829.	1.2	35
25	From superhydrophilic to superhydrophobic surfaces by means of polymeric Layer-by-Layer films. Applied Surface Science, 2015, 351, 1081-1086.	3.1	34
26	Continuous Liquid-Level Sensor Based on a Long-Period Grating and Microwave Photonics Filtering Techniques. IEEE Sensors Journal, 2016, 16, 1652-1658.	2.4	33
27	Sensitivity Improvement of a Humidity Sensor Based on Silica Nanospheres on a Long-Period Fiber Grating. Sensors, 2009, 9, 519-527.	2.1	32
28	Minimizing the photobleaching of self-assembled multilayers for sensor applications. Sensors and Actuators B: Chemical, 2007, 126, 41-47.	4.0	30
29	Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles. Nanoscale Research Letters, 2013, 8, 438.	3.1	27
30	An antibacterial submicron fiber mat with <i>in situ</i> synthesized silver nanoparticles. Journal of Applied Polymer Science, 2012, 126, 1228-1235.	1.3	26
31	Fiber-optic Lossy Mode Resonance Sensors. Procedia Engineering, 2014, 87, 3-8.	1.2	26
32	A comparative study of two different approaches for the incorporation of silver nanoparticles into layer-by-layer films. Nanoscale Research Letters, 2014, 9, 301.	3.1	25
33	Generation of lossy mode resonances with different nanocoatings deposited on coverslips. Optics Express, 2020, 28, 288.	1.7	24
34	Hg2+ Optical Fiber Sensor Based on LSPR Generated by Gold Nanoparticles Embedded in LBL Nano-Assembled Coatings. Sensors, 2019, 19, 4906.	2.1	21
35	Optical fiber sensors based on Layer-by-Layer nanostructured films. Procedia Engineering, 2010, 5, 1087-1090.	1.2	19
36	Encapsulated Quantum Dot Nanofilms Inside Hollow Core Optical Fibers for Temperature Measurement. IEEE Sensors Journal, 2008, 8, 1368-1374.	2.4	17

#	Article	IF	CITATIONS
37	Study and Optimization of Self-Assembled Polymeric Multilayer Structures with Neutral Red for pH Sensing Applications. Journal of Sensors, 2008, 2008, 1-7.	0.6	17
38	Single-stage in situ synthesis of silver nanoparticles in antibacterial self-assembled overlays. Colloid and Polymer Science, 2012, 290, 785-792.	1.0	16
39	Self-Referenced Optical Fiber Sensor for Hydrogen Peroxide Detection based on LSPR of Metallic Nanoparticles in Layer-by-Layer Films. Sensors, 2019, 19, 3872.	2.1	15
40	Trends in the Implementation of Advanced Plasmonic Materials in Optical Fiber Sensors (2010–2020). Chemosensors, 2021, 9, 64.	1.8	15
41	An antibacterial surface coating composed of PAH/SiO ₂ nanostructurated films by layer by layer. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2774-2777.	0.8	14
42	Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings. Journal of Sensors, 2016, 2016, 1-11.	0.6	13
43	Humidity sensor based on silver nanoparticles embedded in a polymeric coating. International Journal on Smart Sensing and Intelligent Systems, 2012, 5, 71-83.	0.4	12
44	Self-Referenced Optical Fiber Sensor Based on LSPR Generated by Gold and Silver Nanoparticles Embedded in Layer-by-Layer Nanostructured Coatings. Chemosensors, 2022, 10, 77.	1.8	11
45	A COMPARATIVE STUDY IN THE SENSITIVITY OF OPTICAL FIBER REFRACTOMETERS BASED ON THE INCORPORATION OF GOLD NANOPARTICLES INTO LAYERBY-Â LAYER FILMS. International Journal on Smart Sensing and Intelligent Systems, 2015, 8, 822-841.	0.4	9
46	Fiber optic temperature sensor depositing quantum dots inside hollow core fibers using the layer by layer technique. Proceedings of SPIE, 2007, , .	0.8	8
47	Laterally selective adsorption of pH sensing coatings based on neutral red by means of the electric field directed layer-by-layer self assembly method. Thin Solid Films, 2009, 517, 3776-3780.	0.8	8
48	Sol-gel technology for antimicrobial textiles. , 2016, , 47-72.		7
49	Silicon carbide as a material-based high-impedance surface for enhanced absorption within ultra-thin metallic films. Optics Express, 2020, 28, 31624.	1.7	7
50	Humidity sensor based on a long-period fiber grating coated with a hydrophobic thin film. Proceedings of SPIE, 2010, , .	0.8	6
51	In Situ Synthesis of Gold Nanoparticles in Layer-by-Layer Polymeric Coatings for the Fabrication of Optical Fiber Sensors. Polymers, 2022, 14, 776.	2.0	6
52	Optical fiber refractometers based on localized surface plasmon resonance (LSPR) and lossy mode resonance (LMR)., 2014, , .		4
53	Optical Sensors for Corrosion Monitoring. , 2015, , 603-640.		4
54	Localized Surface Plasmon Resonance for Optical Fiber-Sensing Applications. , 2017, , .		4

#	Article	IF	Citations
55	Study on White Light Optical Fiber Interferometry for pH Sensor Applications. , 2007, , .		3
56	Quantum Dots for Sensing. , 2009, , 1-51.		3
57	Humidity sensor based on silver nanoparticles embedded in a polymeric coating. , $2011, \ldots$		3
58	Coatings for Optical Fiber Sensors. , 2014, , 103-119.		3
59	Optical fiber pH sensor based on gold nanoparticles into polymeric coatings. , 2015, , .		3
60	Micro/nanodeposition techniques for enhanced optical fiber sensors. , 2021, , 531-573.		3
61	Nanocoated optical fibre for lossy mode resonance (LMR) sensors and filters. , 2015, , .		2
62	"24 hours of innovation": A trans-pyrenean challenge initiative. , 2015, , .		2
63	An Optical Fiber Sensor for Hg2+ Detection Based on the LSPR of Silver and Gold Nanoparticles Embedded in a Polymeric Matrix as an Effective Sensing Material. , 2021, 5, .		2
64	Optical fiber pH sensors based on self-assembled multilayered neutral red coatings. Proceedings of SPIE, 2007, , .	0.8	1
65	Humidity sensor based on a long-period fiber grating coated with a SiO 2 -nanosphere film. , 2008, , .		1
66	Two nanoFabry-Perot interferometers for humidity sensing. , 2008, , .		1
67	Experimental results of antigliadin antibodies detection using long period fiber grating. Proceedings of SPIE, 2008, , .	0.8	1
68	Optical sensor based on polymer electrospun nanofibers for sensing humidity., 2011,,.		1
69	Analyses of performance of novel sensors with different coatings for detection of Lipopolysaccharide. , $2011,\ldots$		1
70	Dynamic Response of Gold-coated Optical Fiber Sensors Subjected to Voltage Variations. , 2020, , .		1
71	Reusable optical fiber sensor for the detection of mercury traces based on LSPR generated by gold nanoparticles Embedded in LbL Nano-Assembled Coatings. , 2021, , .		1
72	Optical fiber pH sensor based on poly (p-phenylene vinylene). Proceedings of SPIE, 2007, , .	0.8	0

#	Article	IF	CITATIONS
73	Amplitude Interference Immune pH Sensing Devices Based on White Light Interferometry. , 2008, , .		O
74	STUDY OF SUPERHYDROPHILIC NANOPARTICLE-BASED ULTRA-THIN FILMS TOWARDS THE DEVELOPMENT OF OPTICAL FIBER HUMIDITY SENSORS. International Journal on Smart Sensing and Intelligent Systems, 2009, 2, 63-74.	0.4	0
75	Partially Coated Long Period Fiber Bragg Gratings in Multicore Optical Fibers. , 2018, , .		O