Juliann G Kiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4264998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From tangled banks to toxic bunnies; a reflection on the issues involved in developing an ecosystem approach for environmental radiation protection. International Journal of Radiation Biology, 2022, 98, 1185-1200.	1.0	17
2	A review of the impact on the ecosystem after ionizing irradiation: wildlife population. International Journal of Radiation Biology, 2022, 98, 1054-1062.	1.0	12
3	Female Mice are More Resistant to the Mixed-Field (67% Neutron + 33% Gamma) Radiation-Induced Injury in Bone Marrow and Small Intestine than Male Mice due to Sustained Increases in G-CSF and the Bcl-2/Bax Ratio and Lower miR-34a and MAPK Activation. Radiation Research, 2022, 198, .	0.7	9
4	Co-Therapy of Pegylated G-CSF and Ghrelin for Enhancing Survival After Exposure to Lethal Radiation. Frontiers in Pharmacology, 2021, 12, 628018.	1.6	7
5	PEG-G-CSF and L-Citrulline Combination Therapy for Mitigating Skin Wound Combined Radiation Injury in a Mouse Model. Radiation Research, 2021, 196, 113-127.	0.7	11
6	Brain Damage and Patterns of Neurovascular Disorder after Ionizing Irradiation. Complications in Radiotherapy and Radiation Combined Injury. Radiation Research, 2021, 196, 1-16.	0.7	25
7	Celebrating 60 Years of Accomplishments of the Armed Forces Radiobiology Research Institute1. Radiation Research, 2021, 196, 129-146.	0.7	4
8	Mesenchymal stem cells and exosomes in tissue regeneration and remodeling. , 2021, , 159-185.		0
9	Ghrelin, a novel therapy, corrects cytokine and NF-κB-AKT-MAPK network and mitigates intestinal injury induced by combined radiation and skin-wound trauma. Cell and Bioscience, 2020, 10, 63.	2.1	25
10	Radiation: a poly-traumatic hit leading to multi-organ injury. Cell and Bioscience, 2019, 9, 25.	2.1	80
11	Ghrelin therapy mitigates bone marrow injury and splenocytopenia by sustaining circulating G-CSF and KC increases after irradiation combined with wound. Cell and Bioscience, 2018, 8, 27.	2.1	13
12	Effects of Low-to-Moderate Doses of Gamma Radiation on Mouse Hematopoietic System. Radiation Research, 2018, 190, 612.	0.7	24
13	Circulating Cytokine/Chemokine Concentrations Respond to Ionizing Radiation Doses but not Radiation Dose Rates: Granulocyte-Colony Stimulating Factor and Interleukin-18. Radiation Research, 2018, 189, 634-643.	0.7	25
14	Combined Therapy of Pegylated G-CSF and Alxn4100TPO Improves Survival and Mitigates Acute Radiation Syndrome after Whole-Body Ionizing Irradiation Alone and Followed by Wound Trauma. Radiation Research, 2017, 188, 556-570.	0.7	23
15	Ghrelin Therapy Decreases Incidents of Intracranial Hemorrhage in Mice after Whole-Body Ionizing Irradiation Combined with Burn Trauma. International Journal of Molecular Sciences, 2017, 18, 1693.	1.8	19
16	Thrombopoietin Receptor Agonist Mitigates Hematopoietic Radiation Syndrome and Improves Survival after Whole-Body Ionizing Irradiation Followed by Wound Trauma. Mediators of Inflammation, 2017, 2017, 1-13.	1.4	16
17	Hemorrhage enhances cytokine, complement component 3, and caspase-3, and regulates microRNAs associated with intestinal damage after whole-body gamma-irradiation in combined injury. PLoS ONE, 2017, 12, e0184393.	1.1	28
18	Exacerbation of Mild Hypoxia on Acute Radiation Syndrome and Subsequent Mortality. Adaptive Medicine, 2017, 8, 28-33.	0.1	4

JULIANN G KIANG

#	Article	IF	CITATIONS
19	Adult Mesenchymal Stem Cells and Radiation Injury. Health Physics, 2016, 111, 198-203.	0.3	20
20	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
21	Skin wound trauma, following high-dose radiation exposure, amplifies and prolongs skeletal tissue loss. Bone, 2015, 81, 487-494.	1.4	7
22	Autophagy and mitochondrial remodelling in mouse mesenchymal stromal cells challenged with <i>Staphylococcus epidermidis</i> . Journal of Cellular and Molecular Medicine, 2015, 19, 1133-1150.	1.6	23
23	Hemorrhage Exacerbates Radiation Effects on Survival, Leukocytopenia, Thrombopenia, Erythropenia, Bone Marrow Cell Depletion and Hematopoiesis, and Inflammation-Associated microRNAs Expression in Kidney. PLoS ONE, 2015, 10, e0139271.	1.1	27
24	Captopril Increases Survival after Whole-Body Ionizing Irradiation but Decreases Survival when Combined with Skin-Burn Trauma in Mice. Radiation Research, 2015, 184, 273-279.	0.7	14
25	Ciprofloxacin Therapy Results in Mitigation of ATP Loss after Irradiation Combined with Wound Trauma: Preservation of Pyruvate Dehydrogenase and Inhibition of Pyruvate Dehydrogenase Kinase 1. Radiation Research, 2015, 183, 684-692.	0.7	12
26	Pegylated G-CSF Inhibits Blood Cell Depletion, Increases Platelets, Blocks Splenomegaly, and Improves Survival after Whole-Body Ionizing Irradiation but Not after Irradiation Combined with Burn. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-10.	1.9	45
27	Ghrelin Therapy Improves Survival after Whole-Body Ionizing Irradiation or Combined with Burn or Wound: Amelioration of Leukocytopenia, Thrombocytopenia, Splenomegaly, and Bone Marrow Injury. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-12.	1.9	33
28	Bone Marrow Mesenchymal Stem Cells Increase Survival after Ionizing Irradiation Combined with Wound Trauma: Characterization and Therapy. Journal of Cell Science & Therapy, 2014, 05, .	0.3	20
29	Ciprofloxacin Increases Survival after Ionizing Irradiation Combined Injury. Health Physics, 2014, 106, 720-726.	0.3	28
30	Ciprofloxacin as a potential radio-sensitizer to tumor cells and a radio-protectant for normal cells: differential effects on γ-H2AX formation, p53 phosphorylation, Bcl-2 production, and cell death. Molecular and Cellular Biochemistry, 2014, 393, 133-143.	1.4	20
31	Ciprofloxacin Enhances Stress Erythropoiesis in Spleen and Increases Survival after Whole-Body Irradiation Combined with Skin-Wound Trauma. PLoS ONE, 2014, 9, e90448.	1.1	27
32	Radioprotective effects of oral 17-dimethylaminoethylamino-17-demethoxygeldanamycin in mice: bone marrow and small intestine. Cell and Bioscience, 2013, 3, 36.	2.1	25
33	Component 3, IgM, and Prostaglandin E _{2} after Whole-Body Reactor-Produced Mixed Field (n + <mml:math)="" 0.784314="" 1="" etqq1="" rgb<sup="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML">-</mml:math>	[/Overlock]	.0 Tƒ 50 182
34	Ciprofloxacin Modulates Cytokine/Chemokine Profile in Serum, Improves Bone Marrow Repopulation, and Limits Apoptosis and Autophagy in Ileum after Whole Body Ionizing Irradiation Combined with Skin-Wound Trauma. PLoS ONE, 2013, 8, e58389.	1.1	50
35	Wound trauma alters ionizing radiation dose assessment. Cell and Bioscience, 2012, 2, 20.	2.1	51
36	Geldanamycin Analog 17-DMAG Limits Apoptosis in Human Peripheral Blood Cells by Inhibition of p53 Activation and its Interaction with Heat-Shock Protein 90 kDa after Exposure to Ionizing Radiation. Radiation Research, 2011, 176, 333-345.	0.7	25

Juliann G Kiang

#	Article	IF	CITATIONS
37	Wound Trauma Increases Radiation-Induced Mortality by Activation of iNOS Pathway and Elevation of Cytokine Concentrations and Bacterial Infection. Radiation Research, 2010, 173, 319-332.	0.7	101
38	Radiation Combined Injury: DNA Damage, Apoptosis, and Autophagy. Adaptive Medicine, 2010, 2, 1-10.	0.1	18
39	Upâ€regulation of autophagy in small intestine Paneth cells in response to totalâ€body γâ€irradiation. Journal of Pathology, 2009, 219, 242-252.	2.1	45
40	Geldanamycin Analog 17-DMAG Inhibits iNOS and Caspases in Gamma-Irradiated Human T Cells. Radiation Research, 2009, 172, 321-330.	0.7	32
41	Inhibition of Inducible Nitric-Oxide Synthase Protects Human T Cells from Hypoxia-Induced Apoptosis. Molecular Pharmacology, 2008, 73, 738-747.	1.0	32
42	Geldanamycin inhibits hemorrhage-induced increases in caspase-3 activity: role of inducible nitric oxide synthase. Journal of Applied Physiology, 2007, 103, 1045-1055.	1.2	17
43	Geldanamycin prevents hemorrhage-induced ATP loss by overexpressing inducible HSP70 and activating pyruvate dehydrogenase. American Journal of Physiology - Renal Physiology, 2006, 291, G117-G127.	1.6	20
44	Biology of hypoxia. Chinese Journal of Physiology, 2006, 49, 223-33.	0.4	56
45	Inducible heat shock protein 70 kD and inducible nitric oxide synthase in hemorrhage/resuscitation-induced injury. Cell Research, 2004, 14, 450-459.	5.7	51