Gehong Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/426422/publications.pdf Version: 2024-02-01

CEHONC WEI

#	Article	IF	CITATIONS
1	Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARSâ€CoVâ€2. Journal of Medical Virology, 2020, 92, 595-601.	5.0	546
2	Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 2018, 6, 146.	11.1	368
3	Bacterial communities in oil contaminated soils: Biogeography and co-occurrence patterns. Soil Biology and Biochemistry, 2016, 98, 64-73.	8.8	366
4	A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nature Communications, 2017, 8, 14888.	12.8	236
5	Biogeography and ecological diversity patterns of rare and abundant bacteria in oilâ€contaminated soils. Molecular Ecology, 2017, 26, 5305-5317.	3.9	220
6	Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity. PLoS Pathogens, 2015, 11, e1005020.	4.7	169
7	Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Molecular Ecology, 2017, 26, 1641-1651.	3.9	134
8	Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiology, 2020, 20, 38.	3.3	122
9	Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biology, 2022, 28, 140-153.	9.5	122
10	Dominant role of abundant rather than rare bacterial taxa in maintaining agro-soil microbiomes under environmental disturbances. Chemosphere, 2019, 235, 248-259.	8.2	115
11	Distinct large-scale biogeographic patterns of fungal communities in bulk soil and soybean rhizosphere in China. Science of the Total Environment, 2018, 644, 791-800.	8.0	103
12	Soil microbial diversity during 30Âyears of grassland restoration on the Loess Plateau, China: Tight linkages with plant diversity. Land Degradation and Development, 2019, 30, 1172-1182.	3.9	94
13	Natural revegetation of a semiarid habitat alters taxonomic and functional diversity of soil microbial communities. Science of the Total Environment, 2018, 635, 598-606.	8.0	89
14	Microbial succession in response to pollutants in batch-enrichment culture. Scientific Reports, 2016, 6, 21791.	3.3	87
15	Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiological Research, 2018, 217, 51-59.	5.3	85
16	Linking Bacterial-Fungal Relationships to Microbial Diversity and Soil Nutrient Cycling. MSystems, 2021, 6, .	3.8	81
17	A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant-induced systemic resistance. Microbiome, 2021, 9, 217.	11.1	78
18	Distinct succession patterns of abundant and rare bacteria in temporal microcosms with pollutants. Environmental Pollution, 2017, 225, 497-505.	7.5	77

#	Article	IF	CITATIONS
19	Interactions of plant growth-promoting rhizobacteria and soil factors in two leguminous plants. Applied Microbiology and Biotechnology, 2017, 101, 8485-8497.	3.6	76
20	Linking soil fungi to bacterial community assembly in arid ecosystems. , 2022, 1, .		76
21	Microbial communities in riparian soils of a settling pond for mine drainage treatment. Water Research, 2016, 96, 198-207.	11.3	69
22	Temporal dynamics of microbial communities in microcosms in response to pollutants. Molecular Ecology, 2017, 26, 923-936.	3.9	69
23	Comprehensive expression analysis of Arabidopsis GA2-oxidase genes and their functional insights. Plant Science, 2019, 285, 1-13.	3.6	68
24	Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-overproducing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant and Soil, 2015, 391, 383-398.	3.7	66
25	Genome Sequence and Mutational Analysis of Plant-Growth-Promoting Bacterium Agrobacterium tumefaciens CCNWGS0286 Isolated from a Zinc-Lead Mine Tailing. Applied and Environmental Microbiology, 2012, 78, 5384-5394.	3.1	64
26	Enhanced phytoremdiation of Robinia pseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function. Chemosphere, 2018, 197, 729-740.	8.2	64
27	Core microbiota drive functional stability of soil microbiome in reforestation ecosystems. Global Change Biology, 2022, 28, 1038-1047.	9.5	58
28	Copper Tolerance Mechanisms of <i>Mesorhizobium amorphae</i> and Its Role in Aiding Phytostabilization by <i>Robinia pseudoacacia</i> in Copper Contaminated Soil. Environmental Science & Technology, 2015, 49, 2328-2340.	10.0	56
29	Kinetics of soil dehydrogenase in response to exogenous Cd toxicity. Journal of Hazardous Materials, 2017, 329, 299-309.	12.4	55
30	Biogeography and ecological processes affecting root-associated bacterial communities in soybean fields across China. Science of the Total Environment, 2018, 627, 20-27.	8.0	53
31	Linking phylogenetic niche conservatism to soil archaeal biogeography, community assembly and species coexistence. Global Ecology and Biogeography, 2021, 30, 1488-1501.	5.8	48
32	Rare prokaryotic sub-communities dominate the complexity of ecological networks and soil multinutrient cycling during long-term secondary succession in China's Loess Plateau. Science of the Total Environment, 2021, 774, 145737.	8.0	47
33	Resilience and Assemblage of Soil Microbiome in Response to Chemical Contamination Combined with Plant Growth. Applied and Environmental Microbiology, 2019, 85, .	3.1	46
34	Stochastic community assembly decreases soil fungal richness in arid ecosystems. Molecular Ecology, 2021, 30, 4338-4348.	3.9	45
35	Genomic insight into the taxonomy of Rhizobium genospecies that nodulate Phaseolus vulgaris. Systematic and Applied Microbiology, 2018, 41, 300-310.	2.8	44
36	T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer. ISME Journal, 2022, 16, 500-510.	9.8	44

#	Article	IF	CITATIONS
37	Diversity of endophytic bacteria associated with nodules of two indigenous legumes at different altitudes of the Qilian Mountains in China. Systematic and Applied Microbiology, 2014, 37, 457-465.	2.8	42
38	Distribution and diversity of rhizobia associated with wild soybean (Glycine soja Sieb. & Zucc.) in Northwest China. Systematic and Applied Microbiology, 2014, 37, 449-456.	2.8	40
39	Above- and belowground biodiversity drives soil multifunctionality along a long-term grassland restoration chronosequence. Science of the Total Environment, 2021, 772, 145010.	8.0	40
40	Distinct biogeographic patterns of rhizobia and non-rhizobial endophytes associated with soybean nodules across China. Science of the Total Environment, 2018, 643, 569-578.	8.0	39
41	Temporal and spatial succession and dynamics of soil fungal communities in restored grassland on the Loess Plateau in China. Land Degradation and Development, 2019, 30, 1273-1287.	3.9	39
42	Insight into the assembly of root-associated microbiome in the medicinal plant Polygonum cuspidatum. Industrial Crops and Products, 2020, 145, 112163.	5.2	38
43	Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China. Journal of Environmental Sciences, 2015, 27, 179-187.	6.1	37
44	Microbial traits determine soil C emission in response to fresh carbon inputs in forests across biomes. Global Change Biology, 2022, 28, 1516-1528.	9.5	37
45	Draft Genome Sequence of Plant Growth-Promoting Rhizobium Mesorhizobium amorphae, Isolated from Zinc-Lead Mine Tailings. Journal of Bacteriology, 2012, 194, 736-737.	2.2	36
46	A Novel Strategy for Detecting Recent Horizontal Gene Transfer and Its Application to Rhizobium Strains. Frontiers in Microbiology, 2018, 9, 973.	3.5	36
47	Assembly and Annotation of a Draft Genome of the Medicinal Plant Polygonum cuspidatum. Frontiers in Plant Science, 2019, 10, 1274.	3.6	36
48	Prevalence of mental health problems in frontline healthcare workers after the first outbreak of COVID-19 in China: a cross-sectional study. Health and Quality of Life Outcomes, 2021, 19, 103.	2.4	36
49	Rare Species-Driven Diversity–Ecosystem Multifunctionality Relationships are Promoted by Stochastic Community Assembly. MBio, 2022, 13, e0044922.	4.1	36
50	A new computational strategy for predicting essential genes. BMC Genomics, 2013, 14, 910.	2.8	34
51	Soil potassium is correlated with root secondary metabolites and root-associated core bacteria in licorice of different ages. Plant and Soil, 2020, 456, 61-79.	3.7	33
52	HY5 Contributes to Light-Regulated Root System Architecture Under a Root-Covered Culture System. Frontiers in Plant Science, 2019, 10, 1490.	3.6	32
53	Graded Response of the Multifunctional 2-Cysteine Peroxiredoxin, CgPrx, to Increasing Levels of Hydrogen Peroxide in <i>Corynebacterium glutamicum</i> . Antioxidants and Redox Signaling, 2017, 26, 1-14.	5.4	28
54	Divergent assemblage patterns of abundant and rare microbial sub-communities in response to inorganic carbon stresses in a simultaneous anammox and denitrification (SAD) system. Bioresource Technology, 2018, 257, 249-259.	9.6	28

#	Article	IF	CITATIONS
55	Responses of soil bacteria and fungal communities to pristine and sulfidized zinc oxide nanoparticles relative to Zn ions. Journal of Hazardous Materials, 2021, 405, 124258.	12.4	28
56	Ohr Protects Corynebacterium glutamicum against Organic Hydroperoxide Induced Oxidative Stress. PLoS ONE, 2015, 10, e0131634.	2.5	28
57	Halophytes increase rhizosphere microbial diversity, network complexity and function in inland saline ecosystem. Science of the Total Environment, 2022, 831, 154944.	8.0	28
58	Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil. Applied and Environmental Microbiology, 2017, 83, .	3.1	26
59	Topography affects the soil conditions and bacterial communities along a restoration gradient on Loess-Plateau. Applied Soil Ecology, 2020, 150, 103471.	4.3	26
60	Global transcriptome analysis of Mesorhizobium alhagi CCNWXJ12-2 under salt stress. BMC Microbiology, 2014, 14, 1.	3.3	25
61	Stochastic processes shape the biogeographic variations in core bacterial communities between aerial and belowground compartments of common bean. Environmental Microbiology, 2021, 23, 949-964.	3.8	25
62	The dual transcriptional regulator <scp>RovM</scp> regulates the expression of <scp>AR3</scp> ―and <scp>T6SS4</scp> â€dependent acid survival systems in response to nutritional status in <scp><i>Y</i></scp> <i>ersinia pseudotuberculosis</i> . Environmental Microbiology, 2015, 17, 4631-4645.	3.8	24
63	Genomic insight into the origins and evolution of symbiosis genes in Phaseolus vulgaris microsymbionts. BMC Genomics, 2020, 21, 186.	2.8	24
64	rDNA- and rRNA-derived communities present divergent assemblage patterns and functional traits throughout full-scale landfill leachate treatment process trains. Science of the Total Environment, 2019, 646, 1069-1079.	8.0	23
65	Flavitalea gansuensis sp. nov., isolated from soil from an arid area, and emended descriptions of the genus Flavitalea and Flavitalea populi. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 490-495.	1.7	21
66	Role of exopolysaccharide in salt stress resistance and cell motility of Mesorhizobium alhagi CCNWXJ12–2T. Applied Microbiology and Biotechnology, 2017, 101, 2967-2978.	3.6	21
67	Epidemiological and Clinical Characteristics of Patients With Coronavirus Disease-2019 in Shiyan City, China. Frontiers in Cellular and Infection Microbiology, 2020, 10, 284.	3.9	21
68	Abundant and rare microbial sub-communities in anammox granules present contrasting assemblage patterns and metabolic functions in response to inorganic carbon stresses. Bioresource Technology, 2018, 265, 299-309.	9.6	20
69	Complexity of bacterial communities within the rhizospheres of legumes drives phenanthrene degradation. Geoderma, 2019, 353, 1-10.	5.1	20
70	Rhizosphere bacterial and fungal spatial distribution and network pattern of Astragalus mongholicus in representative planting sites differ the bulk soil. Applied Soil Ecology, 2021, 168, 104114.	4.3	20
71	Regulation of soil micro-foodwebs to root secondary metabolites in cultivated and wild licorice plants. Science of the Total Environment, 2022, 828, 154302.	8.0	20
72	Comparative analysis of rhizobial chromosomes and plasmids to estimate their evolutionary relationships. Plasmid, 2018, 96-97, 13-24.	1.4	19

#	Article	IF	CITATIONS
73	Soil phosphorus determines the distinct assembly strategies for abundant and rare bacterial communities during successional reforestation. Soil Ecology Letters, 2021, 3, 342-355.	4.5	19
74	Responses of soil bacterial community structure and function to dry–wet cycles more stable in paddy than in dryland agricultural ecosystems. Global Ecology and Biogeography, 2022, 31, 362-377.	5.8	19
75	Sphingobacterium gobiense sp. nov., isolated from soil of the Gobi Desert. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 3931-3935.	1.7	18
76	Zinc Resistance Mechanisms of P1B-type ATPases in Sinorhizobium meliloti CCNWSX0020. Scientific Reports, 2016, 6, 29355.	3.3	18
77	Keystone taxa regulate microbial assemblage patterns and functional traits of different microbial aggregates in simultaneous anammox and denitrification (SAD) systems. Bioresource Technology, 2019, 290, 121778.	9.6	18
78	Effect of Root Diameter on the Selection and Network Interactions of Root-Associated Bacterial Microbiomes in Robinia pseudoacacia L. Microbial Ecology, 2021, 82, 391-402.	2.8	18
79	Plant growth and oil contamination alter the diversity and composition of bacterial communities in agricultural soils across China. Land Degradation and Development, 2018, 29, 1660-1671.	3.9	17
80	A new clade of Mesorhizobium nodulating Alhagi sparsifolia. Systematic and Applied Microbiology, 2009, 32, 8-16.	2.8	16
81	Multifunctionality and microbial communities in agricultural soils regulate the dynamics of a soil-borne pathogen. Plant and Soil, 2021, 461, 309-322.	3.7	16
82	A translationally controlled tumor protein gene Rpf41 is required for the nodulation of Robinia pseudoacacia. Plant Molecular Biology, 2016, 90, 389-402.	3.9	15
83	Temporal dynamics of soil bacterial communities and multifunctionality are more sensitive to introduced plants than to microbial additions in a multicontaminated soil. Land Degradation and Development, 2019, 30, 852-865.	3.9	15
84	Aridity Threshold Induces Abrupt Change of Soil Abundant and Rare Bacterial Biogeography in Dryland Ecosystems. MSystems, 2022, 7, e0130921.	3.8	15
85	The global biogeography of soil priming effect intensity. Global Ecology and Biogeography, 2022, 31, 1679-1687.	5.8	15
86	Altered Metabolic Strategies: Elaborate Mechanisms Adopted by <i>Oenococcus oeni</i> in Response to Acid Stress. Journal of Agricultural and Food Chemistry, 2021, 69, 2906-2918.	5.2	14
87	Removal of Zinc from Aqueous Solution by Metal Resistant Symbiotic Bacterium <i>Mesorhizobium amorphae</i> . Separation Science and Technology, 2014, 49, 376-387.	2.5	13
88	Effects of cowpea (Vigna unguiculata) root mucilage on microbial community response and capacity for phenanthrene remediation. Journal of Environmental Sciences, 2015, 33, 45-59.	6.1	12
89	Functional analysis of PrkA - a putative serine protein kinase from Mesorhizobium alhagi CCNWXJ12-2 - in stress resistance. BMC Microbiology, 2016, 16, 227.	3.3	12
90	Functional characterization of a csoR-cueA divergon in Bradyrhizobium liaoningense CCNWSX0360, involved in copper, zinc and cadmium cotolerance. Scientific Reports, 2016, 6, 35155.	3.3	12

#	Article	IF	CITATIONS
91	Identification of Phytocyanin Gene Family in Legume Plants and their Involvement in Nodulation of <i>Medicago truncatula</i> . Plant and Cell Physiology, 2019, 60, 900-915.	3.1	12
92	Particular microbial clades rather than total microbial diversity best predict the vertical profile variation in soil multifunctionality in desert ecosystems. Land Degradation and Development, 2021, 32, 2157-2168.	3.9	12
93	Regulation of root secondary metabolites by partial rootâ€associated microbiotas under the shaping of licorice ecotypic differentiation in northwest China. Journal of Integrative Plant Biology, 2021, 63, 2093-2109.	8.5	12
94	The Composition of Root-Associated Bacteria and Fungi of Astragalus mongholicus and Their Relationship With the Bioactive Ingredients. Frontiers in Microbiology, 2021, 12, 642730.	3.5	11
95	Evolution and taxonomy of native mesorhizobia nodulating medicinal Glycyrrhiza species in China. Systematic and Applied Microbiology, 2016, 39, 260-265.	2.8	10
96	The Rpf84 gene, encoding a ribosomal large subunit protein, RPL22, regulates symbiotic nodulation in Robinia pseudoacacia. Planta, 2019, 250, 1897-1910.	3.2	10
97	Comprehensive analysis of phenotype, microstructure and global transcriptional profiling to unravel the effect of excess copper on the symbiosis between nitrogen-fixing bacteria and Medicago lupulina. Science of the Total Environment, 2019, 656, 1346-1357.	8.0	10
98	Identification of Robinia pseudoacacia target proteins responsive to Mesorhizobium amphore CCNWGS0123 effector protein NopT. Journal of Experimental Botany, 2020, 71, 7347-7363.	4.8	10
99	Longâ€ŧerm effects of straw mulching coupled with N application on soil organic carbon sequestration and soil aggregation in a winter wheat monoculture system. Agronomy Journal, 2021, 113, 2118-2131.	1.8	10
100	Nickel and cobalt resistance properties of Sinorhizobium meliloti isolated from Medicago lupulina growing in gold mine tailing. PeerJ, 2018, 6, e5202.	2.0	10
101	Population structure of Rhizobium etli -like strains nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biology and Biochemistry, 2017, 112, 14-23.	8.8	9
102	Type III secretion systems impact Mesorhizobium amorphae CCNWGS0123 compatibility with Robinia pseudoacacia. Tree Physiology, 2019, 39, 1533-1550.	3.1	9
103	New Insight into the Evolution of Symbiotic Genes in Black Locust-Associated Rhizobia. Genome Biology and Evolution, 2019, 11, 1736-1750.	2.5	9
104	Shortâ€ŧerm effects of combined organic amendments on soil organic carbon sequestration in a rainâ€fed winter wheat system. Agronomy Journal, 2021, 113, 2150-2164.	1.8	9
105	Comparison of Clinical Features and Outcomes of Medically Attended COVID-19 and Influenza Patients in a Defined Population in the 2020 Respiratory Virus Season. Frontiers in Public Health, 2021, 9, 587425.	2.7	8
106	Exploring the evolutionary dynamics of <i>Rhizobium</i> plasmids through bipartite network analysis. Environmental Microbiology, 2020, 22, 934-951.	3.8	7
107	Taxonomic Compositions and Co-occurrence Relationships of Protists in Bulk Soil and Rhizosphere of Soybean Fields in Different Regions of China. Frontiers in Microbiology, 2021, 12, 738129.	3.5	7
108	Molecular characterization of a eukaryotic-like phenol hydroxylase from <i>Corynebacterium glutamicum</i> . Journal of General and Applied Microbiology, 2015, 61, 99-107.	0.7	6

#	Article	IF	CITATIONS
109	Phylogenetic Diversity of Ammopiptanthus Rhizobia and Distribution of Rhizobia Associated with Ammopiptanthus mongolicus in Diverse Regions of Northwest China. Microbial Ecology, 2016, 72, 231-239.	2.8	6
110	TRAPPC13 Is a Novel Target of <i>Mesorhizobium amorphae</i> Type III Secretion System Effector NopP. Molecular Plant-Microbe Interactions, 2021, 34, 511-523.	2.6	6
111	Biosorption and Bioaccumulation of Cu2+ from Aqueous Solution Using Living M. amorphae Isolated from Mine Tailings. Mine Water and the Environment, 2012, 31, 312-319.	2.0	5
112	Multiple Metabolic Phenotypes as Screening Criteria Are Correlated With the Plant Growth-Promoting Ability of Rhizobacterial Isolates. Frontiers in Microbiology, 2021, 12, 747982.	3.5	5
113	Local domestication of soybean leads to strong root selection and diverse filtration of root-associated bacterial communities. Plant and Soil, 2022, 480, 439-455.	3.7	5
114	Compositional response of Phaseolus vulgaris rhizomicrobiome to a changing soil environment is regulated by long-distance plant signaling. Plant and Soil, 2019, 442, 257-269.	3.7	4
115	Inter-phylum negative interactions affect soil bacterial community dynamics and functions during soybean development under long-term nitrogen fertilization. Stress Biology, 2021, 1, 1.	3.1	4
116	Coupling Root Diameter With Rooting Depth to Reveal the Heterogeneous Assembly of Root-Associated Bacterial Communities in Soybean. Frontiers in Microbiology, 2021, 12, 783563.	3.5	4
117	A Nod factor- and type III secretion system-dependent manner for <i>Robinia pseudoacacia</i> to establish symbiosis with <i>Mesorhizobium amorphae</i> CCNWGS0123. Tree Physiology, 2021, 41, 817-835.	3.1	3
118	The Role of Gut Microbiota in Duodenal-Jejunal Bypass Surgery-Induced Improvement of Hepatic Steatosis in HFD-Fed Rats. Frontiers in Cellular and Infection Microbiology, 2021, 11, 640448.	3.9	3
119	Agricultural Management Drive Bacterial Community Assembly in Different Compartments of Soybean Soil-Plant Continuum. Frontiers in Microbiology, 2022, 13, .	3.5	3
120	Distinct response patterns of bacterial communities in Ag- and ZnO-rGO nanocomposite-amended silt loam soils. Science of the Total Environment, 2021, 810, 151270.	8.0	2
121	Type III secretion systems impact Mesorhizobium amorphae CCNWGS0123 compatibility with Robinia pseudoacacia. Tree Physiology, 2020, 40, 284-284.	3.1	1
122	Rhizobial HmuS _{pSym} as a hemeâ€binding factor is required for optimal symbiosis between <i> Mesorhizobium </i> amorphae CCNWGS0123 and Robinia pseudoacacia . Plant, Cell and Environment, 2022, , .	5.7	0