Daniele La Forgia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4264146/publications.pdf

Version: 2024-02-01

361296 477173 45 960 20 29 citations h-index g-index papers 46 46 46 743 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The Application of Sonovaginography for Implementing Ultrasound Assessment of Endometriosis and Other Gynaecological Diseases. Diagnostics, 2022, 12, 820.	1.3	5
2	MRI in Pregnancy and Precision Medicine: A Review from Literature. Journal of Personalized Medicine, 2022, 12, 9.	1.1	28
3	Prediction of Breast Cancer Histological Outcome by Radiomics and Artificial Intelligence Analysis in Contrast-Enhanced Mammography. Cancers, 2022, 14, 2132.	1.7	31
4	An Invasive Disease Event-Free Survival Analysis to Investigate Ki67 Role with Respect to Breast Cancer Patients' Age: A Retrospective Cohort Study. Cancers, 2022, 14, 2215.	1.7	4
5	A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients. Scientific Reports, 2022, 12, 7914.	1.6	20
6	A machine learning approach applied to gynecological ultrasound to predict progression-free survival in ovarian cancer patients. Archives of Gynecology and Obstetrics, 2022, 306, 2143-2154.	0.8	9
7	Robustness Evaluation of a Deep Learning Model on Sagittal and Axial Breast DCE-MRIs to Predict Pathological Complete Response to Neoadjuvant Chemotherapy. Journal of Personalized Medicine, 2022, 12, 953.	1.1	15
8	Predicting of Sentinel Lymph Node Status in Breast Cancer Patients with Clinically Negative Nodes: A Validation Study. Cancers, 2021, 13, 352.	1.7	33
9	A Proposal of Quantum-Inspired Machine Learning for Medical Purposes: An Application Case. Mathematics, 2021, 9, 410.	1.1	7
10	Pre-Menopausal Breast Fat Density Might Predict MACE During 10 Years of Follow-Up. JACC: Cardiovascular Imaging, 2021, 14, 426-438.	2.3	34
11	A Clinical Decision Support System for Predicting Invasive Breast Cancer Recurrence: Preliminary Results. Frontiers in Oncology, 2021, 11, 576007.	1.3	21
12	Radiomic Feature Reduction Approach to Predict Breast Cancer by Contrast-Enhanced Spectral Mammography Images. Diagnostics, 2021, 11, 684.	1.3	37
13	Response Predictivity to Neoadjuvant Therapies in Breast Cancer: A Qualitative Analysis of Background Parenchymal Enhancement in DCE-MRI. Journal of Personalized Medicine, 2021, 11, 256.	1.1	18
14	A Roadmap towards Breast Cancer Therapies Supported by Explainable Artificial Intelligence. Applied Sciences (Switzerland), 2021, 11, 4881.	1.3	24
15	Early Prediction of Breast Cancer Recurrence for Patients Treated with Neoadjuvant Chemotherapy: A Transfer Learning Approach on DCE-MRIs. Cancers, 2021, 13, 2298.	1.7	29
16	Early prediction of neoadjuvant chemotherapy response by exploiting a transfer learning approach on breast DCE-MRIs. Scientific Reports, 2021, 11, 14123.	1.6	34
17	Radiomics Analysis in Ovarian Cancer: A Narrative Review. Applied Sciences (Switzerland), 2021, 11, 7833.	1.3	14
18	Second-Generation 3D Automated Breast Ultrasonography (Prone ABUS) for Dense Breast Cancer Screening Integrated to Mammography: Effectiveness, Performance and Detection Rates. Journal of Personalized Medicine, 2021, 11, 875.	1.1	11

#	Article	IF	CITATIONS
19	A Cost Decision Model Supporting Treatment Strategy Selection in BRCA1/2 Mutation Carriers in Breast Cancer. Journal of Personalized Medicine, 2021, 11, 847.	1.1	4
20	A Machine Learning Tool to Predict the Response to Neoadjuvant Chemotherapy in Patients with Locally Advanced Cervical Cancer. Applied Sciences (Switzerland), 2021, 11, 823.	1.3	18
21	Prevalence of Patients Affected by Fibromyalgia in a Cohort of Women Underwent Mammography Screening. Healthcare (Switzerland), 2021, 9, 1340.	1.0	1
22	Disease-Free Survival after Breast Conservation Therapy vs. Mastectomy of Patients with T1/2 Breast Cancer and No Lymph Node Metastases: Our Experience. Applied Sciences (Switzerland), 2021, 11, 9800.	1.3	2
23	Sentinel Lymph Node Metastasis on Clinically Negative Patients: Preliminary Results of a Machine Learning Model Based on Histopathological Features. Applied Sciences (Switzerland), 2021, 11, 10372.	1.3	7
24	The Role of Ultrasound Guided Sampling Procedures in the Diagnosis of Pelvic Masses: A Narrative Review of the Literature. Diagnostics, 2021, 11, 2204.	1.3	3
25	Decision support systems for the prediction of lymph node involvement in early breast cancer. Jbuon, 2021, 26, 275-277.	0.3	2
26	Diagnostic challenges and potential early indicators of breast periprosthetic anaplastic large cell lymphoma. Medicine (United States), 2020, 99, e21095.	0.4	3
27	Radiomic Analysis in Contrast-Enhanced Spectral Mammography for Predicting Breast Cancer Histological Outcome. Diagnostics, 2020, 10, 708.	1.3	57
28	Feasibility, Image Quality and Clinical Evaluation of Contrast-Enhanced Breast MRI Performed in a Supine Position Compared to the Standard Prone Position. Cancers, 2020, 12, 2364.	1.7	14
29	Elite VABB 13G: A New Ultrasound-Guided Wireless Biopsy System for Breast Lesions. Technical Characteristics and Comparison with Respect to Traditional Core-Biopsy 14–16G Systems. Diagnostics, 2020, 10, 291.	1.3	7
30	A machine learning approach on multiscale texture analysis for breast microcalcification diagnosis. BMC Bioinformatics, 2020, 21, 91.	1.2	34
31	Early indicators in anaplastic large-cell periprosthetic lymphoma of the breast: clarifications. Jbuon, 2020, 25, 2127-2128.	0.3	2
32	Microcalcification detection in full-field digital mammograms: A fully automated computer-aided system. Physica Medica, 2019, 64, 1-9.	0.4	38
33	Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images. Journal of Clinical Medicine, 2019, 8, 891.	1.0	40
34	Breast MRI background parenchymal enhancement as an imaging bridge to molecular cancer sub-type. European Journal of Radiology, 2019, 113, 148-152.	1.2	37
35	Radiomics Analysis on Contrast-Enhanced Spectral Mammography Images for Breast Cancer Diagnosis: A Pilot Study. Entropy, 2019, 21, 1110.	1.1	38
36	Ensemble Discrete Wavelet Transform and Gray-Level Co-Occurrence Matrix for Microcalcification Cluster Classification in Digital Mammography. Applied Sciences (Switzerland), 2019, 9, 5388.	1.3	34

#	Article	IF	CITATIONS
37	Six-year prospective evaluation of second-look US with volume navigation for MRI-detected additional breast lesions. European Radiology, 2019, 29, 1799-1808.	2.3	21
38	Anaplastic large-cell periprosthetic lymphoma of the breast: could fibrin be an early radiological indicator of the presence of disease?. Jbuon, 2019, 24, 1889-1897.	0.3	2
39	An exploratory radiomics analysis on digital breast tomosynthesis in women with mammographically negative dense breasts. Breast, 2018, 40, 92-96.	0.9	44
40	A prospective comparative trial of adjunct screening with tomosynthesis or ultrasound in women with mammography-negative dense breasts (ASTOUND-2). European Journal of Cancer, 2018, 104, 39-46.	1.3	80
41	A Gradient-Based Approach for Breast DCE-MRI Analysis. BioMed Research International, 2018, 2018, 1-10.	0.9	24
42	Breast Metastasis from Malignant Pleural Mesothelioma: A Rare Challenging Entity. Journal of Thoracic Oncology, 2018, 13, e117-e118.	0.5	2
43	Hough transform for clustered microcalcifications detection in full-field digital mammograms. , 2017, , .		14
44	Bacterial Adhesion to Urethral Catheters: Role of Coating Materials and Immersion in Antibiotic Solution. European Urology, 2001, 40, 354-359.	0.9	31
45	Is it possible to prevent bacterial adhesion onto ureteric stents?. Urological Research, 1997, 25, 213-216.	1.5	17