MarÃ-a Marta Amaral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4264044/publications.pdf

Version: 2024-02-01

840776 642732 27 524 11 23 citations h-index g-index papers 27 27 27 689 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Therapeutic Antibodies Against Shiga Toxins: Trends and Perspectives. Frontiers in Cellular and Infection Microbiology, 2022, 12, 825856.	3.9	15
2	Preservation of protective capacity of hyperimmune anti-Stx2 bovine colostrum against enterohemorrhagic Escherichia coli O157:H7 pathogenicity after pasteurization and spray-drying processes. Journal of Dairy Science, 2021, 104, 5229-5238.	3.4	4
3	Glioblastoma cells potentiate the induction of the Th1-like profile in phosphoantigen-stimulated γδT lymphocytes. Journal of Neuro-Oncology, 2021, 153, 403-415.	2.9	7
4	Presence of Shiga toxin producing Escherichia coli in endocervix of asymptomatic pregnant women from Argentina Placenta, 2021, 112, e38.	1.5	0
5	Human Glomerular Endothelial Cells Treated With Shiga Toxin Type 2 Activate γδT Lymphocytes. Frontiers in Cellular and Infection Microbiology, 2021, 11, 765941.	3.9	1
6	The Deleterious Effects of Shiga Toxin Type 2 Are Neutralized In Vitro by FabF8:Stx2 Recombinant Monoclonal Antibody. Toxins, 2021, 13, 825.	3.4	2
7	Endocytosis, Cytotoxicity, and Translocation of Shiga Toxin-2 Are Stimulated by Infection of Human Intestinal (HCT-8) Monolayers With an Hypervirulent E. coli O157:H7 Lacking stx2 Gene. Frontiers in Cellular and Infection Microbiology, 2019, 9, 396.	3.9	3
8	Cytotoxic effects of Shiga toxin-2 on human extravillous trophoblast cell lines. Reproduction, 2019, 157, 297-304.	2.6	3
9	Immunization of pregnant cows with Shiga toxin-2 induces high levels of specific colostral antibodies and lactoferrin able to neutralize E. coli O157:H7 pathogenicity. Vaccine, 2018, 36, 1728-1735.	3.8	11
10	Human Recombinant Fab Fragment Neutralizes Shiga Toxin Type 2 Cytotoxic Effects in vitro and in vivo. Toxins, 2018, 10, 508.	3.4	11
11	Shiga Toxin-Producing Escherichia coli Infections during Pregnancy. Microorganisms, 2018, 6, 111.	3.6	13
12	Microbiological and serological control of Escherichia coli O157: H7 in kindergarten staff in Buenos Aires city and suburban areas. Medicina, 2017, 77, 185-190.	0.6	3
13	Comparative Characterization of Shiga Toxin Type 2 and Subtilase Cytotoxin Effects on Human Renal Epithelial and Endothelial Cells Grown in Monolayer and Bilayer Conditions. PLoS ONE, 2016, 11, e0158180.	2.5	11
14	Induction of Neutrophil Extracellular Traps in Shiga Toxin-Associated Hemolytic Uremic Syndrome. Journal of Innate Immunity, 2016, 8, 400-411.	3.8	39
15	Involvement of hypoxia and inflammation in early pregnancy loss mediated by Shiga toxin type 2. Placenta, 2015, 36, 674-680.	1.5	12
16	Prevention of renal damage caused by Shiga toxin type 2: Action of Miglustat on human endothelial and epithelial cells. Toxicon, 2015, 105, 27-33.	1.6	16
17	Advances in pathogenesis and therapy of hemolytic uremic syndrome caused by shiga toxinâ€2. IUBMB Life, 2013, 65, 827-835.	3.4	15
18	Action of Shiga Toxin Type-2 and Subtilase Cytotoxin on Human Microvascular Endothelial Cells. PLoS ONE, 2013, 8, e70431.	2. 5	44

#	Article	IF	CITATIONS
19	Thioperamide induces CD4+ CD25+ Foxp3+ regulatory T lymphocytes in the lung mucosa of allergic mice through its action on dendritic cells. Journal of Asthma and Allergy, 2011, 4, 93.	3.4	3
20	Leukotriene C4 prevents the complete maturation of murine dendritic cells and modifies interleukin-12/interleukin-23 balance. Immunology, 2011, 134, 185-197.	4.4	9
21	Cholinergic modulation of dendritic cell function. Journal of Neuroimmunology, 2011, 236, 47-56.	2.3	45
22	Histamineâ€treated dendritic cells improve recruitment of type 2 CD8 T cells in the lungs of allergic mice. Immunology, 2010, 130, 589-596.	4.4	9
23	GM-CSF enhances a CpG-independent pathway of neutrophil activation triggered by bacterial DNA. Molecular Immunology, 2008, 46, 37-44.	2.2	9
24	Histamine Improves Antigen Uptake and Cross-Presentation by Dendritic Cells. Journal of Immunology, 2007, 179, 3425-3433.	0.8	64
25	Interplay of pathogens, cytokines and other stress signals in the regulation of dendritic cell function. Cytokine and Growth Factor Reviews, 2007, 18, 5-17.	7.2	53
26	von Willebrand factor-cleaving protease (ADAMTS13) activity in normal non-pregnant women, pregnant and post-delivery women. Thrombosis and Haemostasis, 2004, 92, 1320-1326.	3.4	121
27	Control of von Willebrand factor multimer size by a fibronectin-related substance. Blood Coagulation and Fibrinolysis, 2003, 14, 441-448.	1.0	1