
## Lei Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4264001/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with<br>double-end binding sites. Nature Nanotechnology, 2021, 16, 166-173.                                                     | 31.5 | 392       |
| 2  | Accelerating Electrolyte Discovery for Energy Storage with High-Throughput Screening. Journal of Physical Chemistry Letters, 2015, 6, 283-291.                                                                               | 4.6  | 276       |
| 3  | Energy storage emerging: A perspective from the Joint Center for Energy Storage Research.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12550-12557.                        | 7.1  | 218       |
| 4  | Sparingly Solvating Electrolytes for High Energy Density Lithium–Sulfur Batteries. ACS Energy<br>Letters, 2016, 1, 503-509.                                                                                                  | 17.4 | 190       |
| 5  | Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen<br>batteries. Nature Communications, 2014, 5, 4895.                                                                            | 12.8 | 186       |
| 6  | Directing the Lithium–Sulfur Reaction Pathway via Sparingly Solvating Electrolytes for High Energy<br>Density Batteries. ACS Central Science, 2017, 3, 605-613.                                                              | 11.3 | 164       |
| 7  | Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries. Advanced Energy Materials, 2015, 5,<br>1401782.                                                                                                              | 19.5 | 143       |
| 8  | Solvating power series of electrolyte solvents for lithium batteries. Energy and Environmental Science, 2019, 12, 1249-1254.                                                                                                 | 30.8 | 138       |
| 9  | The unexpected discovery of the Mg(HMDS) <sub>2</sub> /MgCl <sub>2</sub> complex as a magnesium electrolyte for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2015, 3, 6082-6087.                      | 10.3 | 137       |
| 10 | Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries. Energy and Environmental Science, 2015, 8, 3718-3730.                                                          | 30.8 | 131       |
| 11 | Insight into the Capacity Fading Mechanism of Amorphous Se <sub>2</sub> S <sub>5</sub> Confined in<br>Micro/Mesoporous Carbon Matrix in Ether-Based Electrolytes. Nano Letters, 2016, 16, 2663-2673.                         | 9.1  | 83        |
| 12 | Beyond Local Solvation Structure: Nanometric Aggregates in Battery Electrolytes and Their Effect on<br>Electrolyte Properties. ACS Energy Letters, 2022, 7, 461-470.                                                         | 17.4 | 75        |
| 13 | Effects of Functional Groups in Redox-Active Organic Molecules: A High-Throughput Screening<br>Approach. Journal of Physical Chemistry C, 2017, 121, 237-245.                                                                | 3.1  | 63        |
| 14 | The lightest organic radical cation for charge storage in redox flow batteries. Scientific Reports, 2016, 6, 32102.                                                                                                          | 3.3  | 59        |
| 15 | Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate<br>Electrolytes and Its Influence on S Reduction in a Li–S Battery. ACS Applied Materials & Interfaces,<br>2016, 8, 34360-34371. | 8.0  | 58        |
| 16 | Asymmetric Composition of Ionic Aggregates and the Origin of High Correlated Transference Number<br>in Water-in-Salt Electrolytes. Journal of Physical Chemistry Letters, 2020, 11, 1276-1281.                               | 4.6  | 57        |
| 17 | Revisiting the Role of Conductivity and Polarity of Host Materials for Longâ€Life Lithium–Sulfur<br>Battery. Advanced Energy Materials, 2020, 10, 1903934.                                                                   | 19.5 | 52        |
| 18 | Principle in developing novel fluorinated sulfone electrolyte for high voltage lithium-ion batteries.<br>Energy and Environmental Science, 2021, 14, 3029-3034.                                                              | 30.8 | 44        |

Lei Cheng

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | New Class of Electrocatalysts Based on 2D Transition Metal Dichalcogenides in Ionic Liquid. Advanced<br>Materials, 2019, 31, e1804453.                                                                                                    | 21.0 | 43        |
| 20 | Molecular Design of a Highly Stable Single-Ion Conducting Polymer Gel Electrolyte. ACS Applied<br>Materials & Interfaces, 2020, 12, 29162-29172.                                                                                          | 8.0  | 38        |
| 21 | Influence of Ether Solvent and Anion Coordination on Electrochemical Behavior in Calcium Battery<br>Electrolytes. ACS Applied Energy Materials, 2020, 3, 8437-8447.                                                                       | 5.1  | 37        |
| 22 | 1,4-Bis(trimethylsilyl)-2,5-dimethoxybenzene: a novel redox shuttle additive for overcharge protection<br>in lithium-ion batteries that doubles as a mechanistic chemical probe. Journal of Materials Chemistry<br>A, 2015, 3, 7332-7337. | 10.3 | 33        |
| 23 | Stress- and Interface-Compatible Red Phosphorus Anode for High-Energy and Durable Sodium-Ion<br>Batteries. ACS Energy Letters, 2021, 6, 547-556.                                                                                          | 17.4 | 33        |
| 24 | Adsorption and Diffusion of Fructose in Zeolite HZSM-5: Selection of Models and Methods for Computational Studies. Journal of Physical Chemistry C, 2011, 115, 21785-21790.                                                               | 3.1  | 30        |
| 25 | Computational Studies of Solubilities of LiO <sub>2</sub> and Li <sub>2</sub> O <sub>2</sub> in Aprotic Solvents. Journal of the Electrochemical Society, 2017, 164, E3696-E3701.                                                         | 2.9  | 26        |
| 26 | Origin of Unusual Acidity and Li <sup>+</sup> Diffusivity in a Series of Water-in-Salt Electrolytes.<br>Journal of Physical Chemistry B, 2020, 124, 5284-5291.                                                                            | 2.6  | 26        |
| 27 | An organophosphine oxide redox shuttle additive that delivers long-term overcharge protection for 4 V lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10710-10714.                                                      | 10.3 | 24        |
| 28 | Unveiling decaying mechanism through quantitative structure-activity relationship in electrolytes<br>for lithium-ion batteries. Nano Energy, 2021, 83, 105843.                                                                            | 16.0 | 23        |
| 29 | Communication—Microscopic View of the Ethylene Carbonate Based Lithium-Ion Battery Electrolyte by<br>X-ray Scattering. Journal of the Electrochemical Society, 2019, 166, A47-A49.                                                        | 2.9  | 21        |
| 30 | Microscopic Understanding of the Ionic Networks of "Water-in-Salt―Electrolytes. Energy Material<br>Advances, 2021, 2021, .                                                                                                                | 11.0 | 20        |
| 31 | Solvation Structure and Dynamics of Mg(TFSI) <sub>2</sub> Aqueous Electrolyte. Energy and Environmental Materials, 2022, 5, 295-304.                                                                                                      | 12.8 | 19        |
| 32 | Insight into the nanostructure of "water in salt―solutions: A SAXS/WAXS study on imide-based<br>lithium salts aqueous solutions. Energy Storage Materials, 2022, 45, 696-703.                                                             | 18.0 | 19        |
| 33 | Self-Assembled Solute Networks in Crowded Electrolyte Solutions and Nanoconfinement of Charged Redoxmer Molecules. Journal of Physical Chemistry B, 2020, 124, 10226-10236.                                                               | 2.6  | 18        |
| 34 | Crowded electrolytes containing redoxmers in different states of charge: Solution structure,<br>properties, and fundamental limits on energy density. Journal of Molecular Liquids, 2021, 334, 116533.                                    | 4.9  | 18        |
| 35 | Viscous flow properties and hydrodynamic diameter of phenothiazine-based redox-active molecules in different supporting salt environments. Physics of Fluids, 2020, 32, .                                                                 | 4.0  | 17        |
| 36 | Unexpected electrochemical behavior of an anolyte redoxmer in flow battery electrolytes: solvating<br>cations help to fight against the thermodynamic–kinetic dilemma. Journal of Materials Chemistry A,<br>2020, 8, 13470-13479.         | 10.3 | 17        |

Lei Cheng

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Realistic Ion Dynamics through Charge Renormalization in Nonaqueous Electrolytes. Journal of Physical Chemistry B, 2020, 124, 3214-3220.                                                  | 2.6  | 15        |
| 38 | TEMPO allegro: liquid catholyte redoxmers for nonaqueous redox flow batteries. Journal of Materials Chemistry A, 2021, 9, 16769-16775.                                                    | 10.3 | 15        |
| 39 | Toward Bottom-Up Understanding of Transport in Concentrated Battery Electrolytes. ACS Central Science, 2022, 8, 880-890.                                                                  | 11.3 | 14        |
| 40 | Enabling Magnesium Anodes by Tuning the Electrode/Electrolyte Interfacial Structure. ACS Applied<br>Materials & Interfaces, 2021, 13, 52461-52468.                                        | 8.0  | 13        |
| 41 | Competitive Pi-Stacking and H-Bond Piling Increase Solubility of Heterocyclic Redoxmers. Journal of<br>Physical Chemistry B, 2020, 124, 10409-10418.                                      | 2.6  | 10        |
| 42 | Understanding fluorine-free electrolytes via small-angle X-ray scattering. Journal of Energy<br>Chemistry, 2022, 70, 340-346.                                                             | 12.9 | 10        |
| 43 | Selective Hydration of Rutile TiO <sub>2</sub> as a Strategy for Site-Selective Atomic Layer Deposition.<br>ACS Applied Materials & Interfaces, 2022, 14, 21585-21595.                    | 8.0  | 10        |
| 44 | Fluorescence-Enabled Self-Reporting for Redox Flow Batteries. ACS Energy Letters, 2020, 5, 3062-3068.                                                                                     | 17.4 | 9         |
| 45 | Mechanistic Insights in Quinone-Based Zinc Batteries with Nonaqueous Electrolytes. Journal of the<br>Electrochemical Society, 2020, 167, 100536.                                          | 2.9  | 7         |
| 46 | A First-Principles Investigation of Gas-Phase Ring-Opening Reaction of Furan over HZSM-5 and<br>Ga-Substituted ZSM-5. Industrial & Engineering Chemistry Research, 2019, 58, 15127-15133. | 3.7  | 6         |
| 47 | Selective Hydroxylation of In <sub>2</sub> O <sub>3</sub> as A Route to Site-Selective Atomic Layer<br>Deposition. Journal of Physical Chemistry C, 0, , .                                | 3.1  | 6         |
| 48 | Design of a Scavenging Pyrrole Additive for High Voltage Lithium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 040507.                                                | 2.9  | 3         |
| 49 | Techno-economic analysis of non-aqueous hybrid redox flow batteries. Journal of Power Sources, 2022, 536, 231493.                                                                         | 7.8  | 3         |
| 50 | Computational Studies of Structure and Catalytic Activity of Vanadia for Propane Oxidative Dehydrogenation. ACS Symposium Series, 2013, , 71-82.                                          | 0.5  | 2         |
| 51 | Effects of Salt Aggregation in Perfluoroether Electrolytes. Journal of the Electrochemical Society, 2022, 169, 020506.                                                                    | 2.9  | 2         |
| 52 | Fluorination Enables Simultaneous Improvements of a Dialkoxybenzene-Based Redoxmer for<br>Nonaqueous Redox Flow Batteries. ACS Applied Materials & Interfaces, 2022, 14, 28834-28841.     | 8.0  | 2         |