
Martin Olivier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4263756/publications.pdf Version: 2024-02-01

MADTIN OLIVIED

#	Article	IF	CITATIONS
1	Influence of N-Methylation and Conformation on Almiramide Anti-Leishmanial Activity. Molecules, 2021, 26, 3606.	1.7	4
2	Sandfly Fever Sicilian Virus-Leishmania major co-infection modulates innate inflammatory response favoring myeloid cell infections and skin hyperinflammation. PLoS Neglected Tropical Diseases, 2021, 15, e0009638.	1.3	11
3	Extracellular vesicles and leishmaniasis: Current knowledge and promising avenues for future development. Molecular Immunology, 2021, 135, 73-83.	1.0	17
4	Leishmania Exosomes/Extracellular Vesicles Containing GP63 Are Essential for Enhance Cutaneous Leishmaniasis Development Upon Co-Inoculation of Leishmania amazonensis and Its Exosomes. Frontiers in Cellular and Infection Microbiology, 2021, 11, 709258.	1.8	15
5	Engineering immunoproteasome-expressing mesenchymal stromal cells: A potent cellular vaccine for lymphoma and melanoma in mice. Cell Reports Medicine, 2021, 2, 100455.	3.3	12
6	The role of Leishmania GP63 in the modulation of innate inflammatory response to Leishmania major infection. PLoS ONE, 2021, 16, e0262158.	1.1	10
7	Leishmania Viannia guyanensis, LRV1 virus and extracellular vesicles: a dangerous trio influencing the faith of immune response during muco-cutaneous leishmaniasis. Current Opinion in Immunology, 2020, 66, 108-113.	2.4	23
8	Thermoneutrality and Immunity: How Does Cold Stress Affect Disease?. Frontiers in Immunology, 2020, 11, 588387.	2.2	39
9	Extracellular Vesicles in Trypanosomatids: Host Cell Communication. Frontiers in Cellular and Infection Microbiology, 2020, 10, 602502.	1.8	47
10	Unravelling the proteomic signature of extracellular vesicles released by drug-resistant Leishmania infantumAparasites. PLoS Neglected Tropical Diseases, 2020, 14, e0008439.	1.3	35
11	Isolation of Extracellular Vesicles from Leishmania spp Methods in Molecular Biology, 2020, 2116, 555-574.	0.4	8
12	<i>Giardia</i> extracellular vesicles disrupt intestinal epithelial junctions and inhibit the growth of commensal bacteria while increasing their swimming motility. FASEB Journal, 2020, 34, 1-1.	0.2	2
13	<i>Leishmania</i> and its exosomal pathway: a novel direction for vaccine development. Future Microbiology, 2019, 14, 559-561.	1.0	18
14	Leishmania Viannia guyanensis. Trends in Parasitology, 2019, 35, 1018-1019.	1.5	3
15	Clonal copy-number mosaicism in autoreactive T lymphocytes in diabetic NOD mice. Genome Research, 2019, 29, 1951-1961.	2.4	2
16	Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nature Microbiology, 2019, 4, 714-723.	5.9	80
17	Modulation of Host-Pathogen Communication by Extracellular Vesicles (EVs) of the Protozoan Parasite Leishmania. Frontiers in Cellular and Infection Microbiology, 2019, 9, 100.	1.8	45
18	The Complex Interplay of Parasites, Their Hosts, and Circadian Clocks. Frontiers in Cellular and Infection Microbiology, 2019, 9, 425.	1.8	19

#	Article	IF	CITATIONS
19	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
20	Chronic Intake of Commercial Sweeteners Induces Changes in Feeding Behavior and Signaling Pathways Related to the Control of Appetite in BALB/c Mice. BioMed Research International, 2018, 2018, 1-15.	0.9	9
21	PTPN6. , 2018, , 4298-4308.		0
22	Hepatocyte SHP-1 is a Critical Modulator of Inflammation During Endotoxemia. Scientific Reports, 2017, 7, 2218.	1.6	12
23	The circadian clock in immune cells controls the magnitude of Leishmania parasite infection. Scientific Reports, 2017, 7, 10892.	1.6	76
24	HIV-1 enhances mTORC1 activity and repositions lysosomes to the periphery by co-opting Rag GTPases. Scientific Reports, 2017, 7, 5515.	1.6	31
25	Protein Tyrosine Phosphatase Inhibition Prevents Experimental Cerebral Malaria by Precluding CXCR3 Expression on T Cells. Scientific Reports, 2017, 7, 5478.	1.6	3
26	Highlights of the São Paulo ISEV workshop on extracellular vesicles in crossâ€kingdom communication. Journal of Extracellular Vesicles, 2017, 6, 1407213.	5.5	38
27	Cysteine Peptidase B Regulates Leishmania mexicana Virulence through the Modulation of GP63 Expression. PLoS Pathogens, 2016, 12, e1005658.	2.1	41
28	Leishmania exosomes and other virulence factors: Impact on innate immune response and macrophage functions. Cellular Immunology, 2016, 309, 7-18.	1.4	107
29	Absence of apolipoprotein E protects mice from cerebral malaria. Scientific Reports, 2016, 6, 33615.	1.6	12
30	PTPN6., 2016, , 1-11.		0
31	Iron Prevents the Development of Experimental Cerebral Malaria by Attenuating CXCR3-Mediated T Cell Chemotaxis. PLoS ONE, 2015, 10, e0118451.	1.1	9
32	PKC/ROS-Mediated NLRP3 Inflammasome Activation Is Attenuated by Leishmania Zinc-Metalloprotease during Infection. PLoS Neglected Tropical Diseases, 2015, 9, e0003868.	1.3	72
33	Adaptation of <i>Leishmania donovani</i> to Cutaneous and Visceral Environments: in Vivo Selection and Proteomic Analysis. Journal of Proteome Research, 2015, 14, 1033-1059.	1.8	20
34	Impact of Leishmania Infection on Host Macrophage Nuclear Physiology and Nucleopore Complex Integrity. PLoS Pathogens, 2015, 11, e1004776.	2.1	32
35	Exosome Secretion by the Parasitic Protozoan Leishmania within the Sand Fly Midgut. Cell Reports, 2015, 13, 957-967.	2.9	220
36	Impact of Leishmania mexicana Infection on Dendritic Cell Signaling and Functions. PLoS Neglected Tropical Diseases, 2014, 8, e3202.	1.3	41

#	Article	IF	CITATIONS
37	Malarial Pigment Hemozoin and the Innate Inflammatory Response. Frontiers in Immunology, 2014, 5, 25.	2.2	112
38	Plasmodium Products Contribute to Severe Malarial Anemia by Inhibiting Erythropoietin-Induced Proliferation of Erythroid Precursors. Journal of Infectious Diseases, 2014, 209, 140-149.	1.9	40
39	Immune Evasion by Parasites. , 2014, , 453-469.		2
40	Drug Delivery by Tattooing to Treat Cutaneous Leishmaniasis. Scientific Reports, 2014, 4, 4156.	1.6	17
41	Absence of Metalloprotease GP63 Alters the Protein Content of Leishmania Exosomes. PLoS ONE, 2014, 9, e95007.	1.1	98
42	Leishmania Evades Host Immunity by Inhibiting Antigen Cross-Presentation through Direct Cleavage of the SNARE VAMP8. Cell Host and Microbe, 2013, 14, 15-25.	5.1	129
43	Leishmanolysin. , 2013, , 1231-1237.		0
44	Immunomodulatory Impact of Leishmania-Induced Macrophage Exosomes: A Comparative Proteomic and Functional Analysis. PLoS Neglected Tropical Diseases, 2013, 7, e2185.	1.3	119
45	Impact of Neutrophil-Secreted Myeloid Related Proteins 8 and 14 (MRP 8/14) on Leishmaniasis Progression. PLoS Neglected Tropical Diseases, 2013, 7, e2461.	1.3	10
46	Inherited human OX40 deficiency underlying classic Kaposi sarcoma of childhood. Journal of Experimental Medicine, 2013, 210, 1743-1759.	4.2	119
47	Impact of Leishmania metalloprotease GP63 on macrophage signaling. Frontiers in Cellular and Infection Microbiology, 2012, 2, 72.	1.8	129
48	TAK1 contributes to the enhanced responsiveness of LTB4-treated neutrophils to Toll-like receptor ligands. International Immunology, 2012, 24, 693-704.	1.8	17
49	Inflammation-Driven Reprogramming of CD4+Foxp3+ Regulatory T Cells into Pathogenic Th1/Th17 T Effectors Is Abrogated by mTOR Inhibition in vivo. PLoS ONE, 2012, 7, e35572.	1.1	100
50	Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Research, 2012, 40, 1131-1147.	6.5	135
51	The Protein Tyrosine Phosphatase SHP-1 Regulates Phagolysosome Biogenesis. Journal of Immunology, 2012, 189, 2203-2210.	0.4	23
52	Host Cell Signalling and <i>Leishmania</i> Mechanisms of Evasion. Journal of Tropical Medicine, 2012, 2012, 1-14.	0.6	110
53	PrP. , 2012, , 1488-1488.		0
54	Leishmania virulence factors: focus on the metalloprotease GP63. Microbes and Infection, 2012, 14, 1377-1389.	1.0	170

#	Article	IF	CITATIONS
55	Translational control of the activation of transcription factor NF-κB and production of type I interferon by phosphorylation of the translation factor eIF4E. Nature Immunology, 2012, 13, 543-550.	7.0	114
56	Immunization against Leishmania major Infection Using LACK- and IL-12-Expressing Lactococcus lactis Induces Delay in Footpad Swelling. PLoS ONE, 2012, 7, e30945.	1.1	29
57	Generation and evaluation of A2-expressing Lactococcus lactis live vaccines against Leishmania donovani in BALB/c mice. Journal of Medical Microbiology, 2011, 60, 1248-1260.	0.7	28
58	Leishmania Repression of Host Translation through mTOR Cleavage Is Required for Parasite Survival and Infection. Cell Host and Microbe, 2011, 9, 331-341.	5.1	153
59	New Inflammation-Related Biomarkers during Malaria Infection. PLoS ONE, 2011, 6, e26495.	1.1	43
60	Culprit within a culprit. Nature, 2011, 471, 173-174.	13.7	8
61	Compartmentalized CDK2 is connected with SHP-1 and \hat{l}^2 -catenin and regulates insulin internalization. Cellular Signalling, 2011, 23, 911-919.	1.7	21
62	Temperature-Induced Protein Secretion by Leishmania mexicana Modulates Macrophage Signalling and Function. PLoS ONE, 2011, 6, e18724.	1.1	93
63	Protein Tyrosine Phosphatases Are Regulated by Mononuclear Iron Dicitrate. Journal of Biological Chemistry, 2010, 285, 24620-24628.	1.6	25
64	Cerebral malaria: human versus mouse studies. Trends in Parasitology, 2010, 26, 274-275.	1.5	39
65	The IL-12p70/IL-10 interplay is differentially regulated by free heme and hemozoin in murine bone-marrow-derived macrophages. International Journal for Parasitology, 2010, 40, 1003-1012.	1.3	22
66	Innate inflammatory response to the malarial pigment hemozoin. Microbes and Infection, 2010, 12, 889-899.	1.0	76
67	<i>In Vitro</i> Characterization of the Microglial Inflammatory Response to <i>Streptococcus suis</i> , an Important Emerging Zoonotic Agent of Meningitis. Infection and Immunity, 2010, 78, 5074-5085.	1.0	43
68	Comparative Study of the Ability of <i>Leishmania mexicana</i> Promastigotes and Amastigotes To Alter Macrophage Signaling and Functions. Infection and Immunity, 2010, 78, 2438-2445.	1.0	56
69	Editorial: Leishmania survival mechanisms: the role of host phosphatases. Journal of Leukocyte Biology, 2010, 88, 1-3.	1.5	21
70	Leishmania-Induced Inactivation of the Macrophage Transcription Factor AP-1 Is Mediated by the Parasite Metalloprotease GP63. PLoS Pathogens, 2010, 6, e1001148.	2.1	126
71	Protease inhibitors as prophylaxis against leishmaniasis: new hope from the major surface protease gp63. Future Medicinal Chemistry, 2010, 2, 539-542.	1.1	14
72	Proteases and phosphatases during leishmania-macrophage interaction: Paving the road for pathogenesis. Virulence, 2010, 1, 314-318.	1.8	22

#	Article	IF	CITATIONS
73	Identification of key cytosolic kinases containing evolutionarily conserved kinase tyrosine-based inhibitory motifs (KTIMs). Developmental and Comparative Immunology, 2010, 34, 481-484.	1.0	14
74	Opposing Forces in Asthma: Regulation of Signaling Pathways by Kinases and Phosphatases. Critical Reviews in Immunology, 2009, 29, 419-442.	1.0	9
75	Host-Pathogen Interactions of <i>Actinobacillus pleuropneumoniae</i> with Porcine Lung and Tracheal Epithelial Cells. Infection and Immunity, 2009, 77, 1426-1441.	1.0	101
76	Aspergillus fumigatusInduces Immunoglobulin E–Independent Mast Cell Degranulation. Journal of Infectious Diseases, 2009, 200, 464-472.	1.9	51
77	<i>Leishmania</i> GP63 Alters Host Signaling Through Cleavage-Activated Protein Tyrosine Phosphatases. Science Signaling, 2009, 2, ra58.	1.6	170
78	Malarial Hemozoin Activates the NLRP3 Inflammasome through Lyn and Syk Kinases. PLoS Pathogens, 2009, 5, e1000559.	2.1	281
79	Protein Tyrosine Phosphatases Regulate Asthma Development in a Murine Asthma Model. Journal of Immunology, 2009, 182, 1334-1340.	0.4	11
80	Regulation of macrophage nitric oxide production by the protein tyrosine phosphatase Src homology 2 domain phosphotyrosine phosphatase 1 (SHPâ€1). Immunology, 2009, 127, 123-133.	2.0	46
81	The role of protein tyrosine phosphatases in the regulation of allergic asthma: implication of TCâ€PTP and PTPâ€IB in the modulation of disease development. Immunology, 2009, 128, 534-542.	2.0	10
82	Role of myeloid related proteins 8/14 in the innate immune control of leishmaniasis. Cytokine, 2009, 48, 62.	1.4	0
83	Autofluorescence of Condensed Heme Aggregates in Malaria Pigment and Its Synthetic Equivalent Hematin Anhydride (β-Hematin). Journal of Physical Chemistry B, 2009, 113, 8391-8401.	1.2	23
84	The Leishmania Surface Protease GP63 Cleaves Multiple Intracellular Proteins and Actively Participates in p38 Mitogen-activated Protein Kinase Inactivation. Journal of Biological Chemistry, 2009, 284, 6893-6908.	1.6	120
85	Synthetic Plasmodium-Like Hemozoin Activates the Immune Response: A Morphology - Function Study. PLoS ONE, 2009, 4, e6957.	1.1	62
86	A novel form of NFâ€̂₽B is induced by <i>Leishmania </i> infection: Involvement in macrophage gene expression. European Journal of Immunology, 2008, 38, 1071-1081.	1.6	112
87	Crucial cytokine interactions in nitric oxide production induced by Mycoplasma arthritidis superantigen. Microbes and Infection, 2008, 10, 1543-1551.	1.0	7
88	Abnormal IFN-γ-dependent immunoproteasome modulation by Trypanosoma cruzi-infected macrophages. Parasite Immunology, 2008, 30, 280-292.	0.7	11
89	Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biology, 2008, 9, R115.	13.9	140
90	Innate inflammatory responses to the Gram-positive bacterium Lactococcus lactis. Vaccine, 2008, 26, 2689-2699.	1.7	32

#	Article	IF	CITATIONS
91	Protein tyrosine phosphatase inhibition induces anti-tumor activity: Evidence of Cdk2/p27kip1 and Cdk2/SHP-1 complex formation in human ovarian cancer cells. Cancer Letters, 2008, 262, 265-275.	3.2	36
92	242 SHP-1-mediated IRAK-1 inactivation inhibits LPS-induced macrophage functions during leishmaniasis. Cytokine, 2008, 43, 297.	1.4	0
93	Myeloid-Related Proteins Rapidly Modulate Macrophage Nitric Oxide Production during Innate Immune Response. Journal of Immunology, 2008, 181, 3595-3601.	0.4	33
94	Comparison of the Effects of <i>Leishmania major</i> or <i>Leishmania donovani</i> Infection on Macrophage Gene Expression. Infection and Immunity, 2008, 76, 1186-1192.	1.0	81
95	Leishmania-Induced IRAK-1 Inactivation Is Mediated by SHP-1 Interacting with an Evolutionarily Conserved KTIM Motif. PLoS Neglected Tropical Diseases, 2008, 2, e305.	1.3	88
96	Protein Tyrosine Phosphatases inhibition during allergen sensitization or allergen challenge prevents asthma development. FASEB Journal, 2008, 22, 483-483.	0.2	0
97	Induction of Nitric Oxide Synthase and Activation of Signaling Proteins in Anopheles Mosquitoes by the Malaria Pigment, Hemozoin. Infection and Immunity, 2007, 75, 4012-4019.	1.0	57
98	Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1919-1924.	3.3	468
99	Role of protein tyrosine phosphatases in the regulation of interferon-γ-induced macrophage nitric oxide generation: implication of ERK pathway and AP-1 activation. Journal of Leukocyte Biology, 2007, 81, 835-844.	1.5	19
100	NRAMP-1 Expression Modulates Protein-tyrosine Phosphatase Activity in Macrophages. Journal of Biological Chemistry, 2007, 282, 36190-36198.	1.6	30
101	Epstein-Barr Virus Induces MCP-1 Secretion by Human Monocytes via TLR2. Journal of Virology, 2007, 81, 8016-8024.	1.5	130
102	Trypanocidal and Antileishmanial Dihydrochelerythrine Derivatives from <i>Garcinia lucida</i> . Journal of Natural Products, 2007, 70, 1650-1653.	1.5	65
103	Identification and Characterization of a Protein-tyrosine Phosphatase in Leishmania. Journal of Biological Chemistry, 2006, 281, 36257-36268.	1.6	39
104	Proinflammatory cytokine and chemokine modulation byStreptococcus suisin a whole-blood culture system. FEMS Immunology and Medical Microbiology, 2006, 47, 92-106.	2.7	69
105	The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis. Nature Medicine, 2006, 12, 549-556.	15.2	141
106	<i>Trypanosoma cruzi</i> -Mediated IFN-γ-Inducible Nitric Oxide Output in Macrophages Is Regulated by <i>iNOS</i> mRNA Stability. Journal of Immunology, 2006, 177, 6271-6280.	0.4	38
107	Role of Host Protein Tyrosine Phosphatase SHP-1 in Leishmania donovani -Induced Inhibition of Nitric Oxide Production. Infection and Immunity, 2006, 74, 6272-6279.	1.0	103
108	Regulation of theLeishmania-induced innate inflammatory response by the protein tyrosine phosphatase SHP-1. European Journal of Immunology, 2005, 35, 1906-1917.	1.6	56

#	Article	IF	CITATIONS
109	Topoisomerase I Amino Acid Substitutions, Gly185Arg and Asp325Glu, Confer Camptothecin Resistance in Leishmania donovani. Antimicrobial Agents and Chemotherapy, 2005, 49, 1441-1446.	1.4	25
110	Hemozoin Induces Macrophage Chemokine Expression through Oxidative Stress-Dependent and -Independent Mechanisms. Journal of Immunology, 2005, 174, 475-484.	0.4	119
111	Proteasome-mediated Degradation of STAT1 \hat{l} ± following Infection of Macrophages with Leishmania donovani. Journal of Biological Chemistry, 2005, 280, 30542-30549.	1.6	63
112	Subversion Mechanisms by Which Leishmania Parasites Can Escape the Host Immune Response: a Signaling Point of View. Clinical Microbiology Reviews, 2005, 18, 293-305.	5.7	448
113	Encapsulated Streptococcus suis Inhibits Activation of Signaling Pathways Involved in Phagocytosis. Infection and Immunity, 2004, 72, 5322-5330.	1.0	91
114	Monosodium Urate Crystals Synergize with IFN-γ to Generate Macrophage Nitric Oxide: Involvement of Extracellular Signal-Regulated Kinase 1/2 and NF-κB. Journal of Immunology, 2004, 172, 5734-5742.	0.4	60
115	Signaling Events Involved in Macrophage Chemokine Expression in Response to Monosodium Urate Crystals. Journal of Biological Chemistry, 2004, 279, 52797-52805.	1.6	52
116	Hemozoin-Inducible Proinflammatory Events In Vivo: Potential Role in Malaria Infection. Journal of Immunology, 2004, 172, 3101-3110.	0.4	119
117	Signalling events involved in interferon-gamma-inducible macrophage nitric oxide generation. Immunology, 2003, 108, 513-522.	2.0	122
118	Recombinant Leishmania major Secreting Biologically Active Granulocyte-Macrophage Colony-Stimulating Factor Survives Poorly in Macrophages In Vitro and Delays Disease Development in Mice. Infection and Immunity, 2003, 71, 6499-6509.	1.0	39
119	Hemozoin Increases IFN-Î ³ -Inducible Macrophage Nitric Oxide Generation Through Extracellular Signal-Regulated Kinase- and NF-κB-Dependent Pathways. Journal of Immunology, 2003, 171, 4243-4253.	0.4	120
120	Hydrogen Peroxide Induces Murine Macrophage Chemokine Gene Transcription Via Extracellular Signal-Regulated Kinase- and Cyclic Adenosine 5â€ ² -Monophosphate (cAMP)-Dependent Pathways: Involvement of NF-κB, Activator Protein 1, and cAMP Response Element Binding Protein. Journal of Immunology, 2002, 169, 7026-7038.	0.4	88
121	Prostaglandin E2-Mediated Activation of HIV-1 Long Terminal Repeat Transcription in Human T Cells Necessitates CCAAT/Enhancer Binding Protein (C/EBP) Binding Sites in Addition to Cooperative Interactions Between C/EBPÎ ² and Cyclic Adenosine 5â€ ² -Monophosphate Response Element Binding Protein. Iournal of Immunology, 2002, 168, 274-282.	0.4	33
122	Leishmaniaâ€Induced Cellular Recruitment during the Early Inflammatory Response: Modulation of Proinflammatory Mediators. Journal of Infectious Diseases, 2002, 185, 673-681.	1.9	104
123	Reduced Infectivity of a Leishmania donovani Biopterin Transporter Genetic Mutant and Its Use as an Attenuated Strain for Vaccination. Infection and Immunity, 2002, 70, 62-68.	1.0	96
124	Activation of JAK2/STAT1-α-dependent signaling events during Mycobacterium tuberculosis-induced macrophage apoptosis. Cellular Immunology, 2002, 217, 58-66.	1.4	41
125	Adaptation of Leishmania Cells to in Vitro Culture Results in a More Efficient Reduction and Transport of Biopterin. Experimental Parasitology, 2001, 97, 161-168.	0.5	19
126	Leishmania donovani-induced macrophages cyclooxygenase-2 and prostaglandin E2synthesis. Parasite Immunology, 2001, 23, 177-184.	0.7	39

#	Article	IF	CITATIONS
127	Role of host phosphotyrosine phosphatase SHP-1 in the development of murine leishmaniasis. European Journal of Immunology, 2001, 31, 3185-3196.	1.6	85
128	Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO Journal, 2001, 20, 1245-1258.	3.5	123
129	Treatment of Visceral Leishmaniasis with Sterically Stabilized Liposomes Containing Camptothecin. Antimicrobial Agents and Chemotherapy, 2001, 45, 2623-2627.	1.4	40
130	Peroxovanadium-mediated protection against murine leishmaniasis: role of the modulation of nitric oxide. European Journal of Immunology, 2000, 30, 2555-2564.	1.6	65
131	Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp. infections in macrophages and in animal models. Molecular and Biochemical Parasitology, 2000, 110, 195-206.	0.5	150
132	Vacuole Acidification Is Not Required for Survival of Salmonella enterica Serovar Typhimurium within Cultured Macrophages and Epithelial Cells. Infection and Immunity, 2000, 68, 5401-5404.	1.0	33
133	Immunomodulation of Pneumococcal Pulmonary Infection with <i> N ^G </i> -Monomethyl- <scp>l</scp> -Arginine. Antimicrobial Agents and Chemotherapy, 1999, 43, 2283-2290.	1.4	20
134	Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-Î ³ -triggered JAK2 activation. European Journal of Immunology, 1999, 29, 3737-3744.	1.6	156
135	Neuronal activity and transcription of proinflammatory cytokines, ll̂ºBα, and iNOS in the mouse brain during acute endotoxemia and chronic infection with Trypanosoma brucei brucei. Journal of Neuroscience Research, 1999, 57, 801-816.	1.3	25
136	Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-Î ³ -triggered JAK2 activation. , 1999, 29, 3737.		2
137	Phenotypic difference between Bcgr and Bcgs macrophages is related to differences in protein-kinase-C-dependent signalling. FEBS Journal, 1998, 251, 734-743.	0.2	24
138	Prostaglandin E2 Up-regulates HIV-1 Long Terminal Repeat-driven Gene Activity in T Cells via NF-κB-dependent and -Independent Signaling Pathways. Journal of Biological Chemistry, 1998, 273, 27306-27314.	1.6	53
139	Protection againstLeishmania majorChallenge Infection in Mice Vaccinated with Live Recombinant Parasites Expressing a Cytotoxic Gene. Journal of Infectious Diseases, 1998, 177, 188-195.	1.9	34
140	Modulation of Interferon-Î ³ -induced Macrophage Activation by Phosphotyrosine Phosphatases Inhibition. Journal of Biological Chemistry, 1998, 273, 13944-13949.	1.6	109
141	Reduction by Cefodizime of the Pulmonary Inflammatory Response Induced by Heat-Killed <i>Streptococcus pneumoniae</i> in Mice. Antimicrobial Agents and Chemotherapy, 1998, 42, 2527-2533.	1.4	18
142	Cytokine Kinetics and Other Host Factors in Response to Pneumococcal Pulmonary Infection in Mice. Infection and Immunity, 1998, 66, 912-922.	1.0	197
143	Activation of HIV-1 Long Terminal Repeat Transcription and Virus Replication via NF-κB-dependent and -independent Pathways by Potent Phosphotyrosine Phosphatase Inhibitors, the Peroxovanadium Compounds. Journal of Biological Chemistry, 1997, 272, 12968-12977.	1.6	84
144	Selective Killing ofLeishmaniaAmastigotes Expressing a Thymidine Kinase Suicide Gene. Experimental Parasitology, 1997, 85, 35-42.	0.5	33

#	Article	IF	CITATIONS
145	Gene Disruption of the P-Glycoprotein Related GenepgpaofLeishmania tarentolae. Biochemical and Biophysical Research Communications, 1996, 224, 772-778.	1.0	57
146	Tyrosine kinase and cAMP-dependent protein kinase activities in CD40-activated human B lymphocytes. European Journal of Immunology, 1996, 26, 2376-2382.	1.6	19
147	Immunotherapy with IL-2-stimulated splenocytes reduces in vitro the level of Leishmania donovani infection in peritoneal macrophages. International Journal for Parasitology, 1995, 25, 975-981.	1.3	8
148	Killing of Leishmania donovani by activated liver macrophages from resistant and susceptible strains of mice. International Journal for Parasitology, 1989, 19, 377-383.	1.3	11
149	Immune Evasion by Parasites. , 0, , 379-392.		9