
Yoichi M A Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4263726/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Reusable and Active Nanometalâ^'Siliconâ€Nanowire Array Hybrid Catalysts for Hydrogenation. European Journal of Inorganic Chemistry, 2021, 2021, 708-712.	1.0	4
2	Polymer-Supported-Cobalt-Catalyzed Regioselective Cyclotrimerization of Aryl Alkynes. Jacs Au, 2021, 1, 2080-2087.	3.6	12
3	Design of Experimental Conditions with Machine Learning for Collaborative Organic Synthesis Reactions Using Transition-Metal Catalysts. ACS Omega, 2021, 6, 27578-27586.	1.6	12
4	Microwave-assisted photooxidation of sulfoxides. Scientific Reports, 2021, 11, 20505.	1.6	4
5	Recent Advances in Continuousâ€Flow Enantioselective Catalysis. Chemistry - A European Journal, 2020, 26, 5729-5747.	1.7	57
6	Production of Bio Hydrofined Diesel, Jet Fuel, and Carbon Monoxide from Fatty Acids Using a Silicon Nanowire Array-Supported Rhodium Nanoparticle Catalyst under Microwave Conditions. ACS Catalysis, 2020, 10, 2148-2156.	5.5	18
7	Second-Generation meta-Phenolsulfonic Acid–Formaldehyde Resin as a Catalyst for Continuous-Flow Esterification. Organic Letters, 2020, 22, 160-163.	2.4	15
8	Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction. Nature Communications, 2020, 11, 5181.	5.8	205
9	Frontispiece: Recent Advances in Continuousâ€Flow Enantioselective Catalysis. Chemistry - A European Journal, 2020, 26, .	1.7	1
10	Switching from Biaryl Formation to Amidation with Convoluted Polymeric Nickel Catalysis. ACS Catalysis, 2020, 10, 14410-14418.	5.5	17
11	Catalytic Reductive Alkylation of Amines in Batch and Microflow Conditions Using a Silicon-Wafer-Based Palladium Nanocatalyst. ACS Omega, 2020, 5, 26938-26945.	1.6	6
12	A Convoluted Polyvinylpyridineâ€Palladium Catalyst for Suzukiâ€Miyaura Coupling and Câ^'H Arylation. Advanced Synthesis and Catalysis, 2020, 362, 4687-4698.	2.1	18
13	Synthesis, Structure, and Complexation of an Sâ€Shaped Double Azahelicene with Innerâ€Edge Nitrogen Atoms. Chemistry - A European Journal, 2020, 26, 13107-13107.	1.7	0
14	CO ₂ reduction driven by a pH gradient. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22873-22879.	3.3	84
15	Activator-Promoted Aryl Halide-Dependent Chemoselective Buchwald–Hartwig and Suzuki–Miyaura Type Cross-Coupling Reactions. Organic Letters, 2020, 22, 4797-4801.	2.4	14
16	Synthesis, Structure, and Complexation of an Sâ€5haped Double Azahelicene with Innerâ€Edge Nitrogen Atoms. Chemistry - A European Journal, 2020, 26, 13170-13176.	1.7	15
17	Metallically gradated silicon nanowire and palladium nanoparticle composites as robust hydrogenation catalysts. Communications Chemistry, 2020, 3, .	2.0	16
18	Zâ€bpy, a New <i>C</i> ₂ â€Symmetric Bipyridine Ligand and Its Application in Enantioselective Copper(I)â€Catalyzed Cyclopropanation of Olefins. Chinese Journal of Chemistry, 2019, 37, 807-810.	2.6	14

#	Article	IF	CITATIONS
19	Microfluidic Reactors for Carbon Fixation under Ambient-Pressure Alkaline-Hydrothermal-Vent Conditions. Life, 2019, 9, 16.	1.1	18
20	Self-Assembled Polymeric Pyridine Copper Catalysts for Huisgen Cycloaddition with Alkynes and Acetylene Gas: Application in Synthesis of Tazobactam. Organic Process Research and Development, 2019, 23, 493-498.	1.3	14
21	Poly(<i>meta</i> -phenylene oxides) for the design of a tunable, efficient, and reusable catalytic platform. Chemical Communications, 2018, 54, 2878-2881.	2.2	9
22	Synthesis and Catalytic Applications of a Triptycene-Based Monophosphine Ligand for Palladium-Mediated Organic Transformations. ACS Omega, 2017, 2, 1930-1937.	1.6	29
23	Photocatalytic Aerobic Oxidation of Alkenes into Epoxides or Chlorohydrins Promoted by a Polymerâ€5upported Decatungstate Catalyst. ChemPhotoChem, 2017, 1, 479-484.	1.5	19
24	Development of Batch and Flow Immobilized Catalytic Systems with High Catalytic Activity and Reusability. Chemical and Pharmaceutical Bulletin, 2017, 65, 805-821.	0.6	8
25	Huisgen Cycloaddition with Acetylene Gas by Using an Amphiphilic Self-Assembled Polymeric Copper Catalyst. Heterocycles, 2017, 95, 715.	0.4	2
26	Supramolecular Scaffold for Tailoring the Two-Dimensional Assembly of Functional Molecular Units into Organic Thin Films. Journal of the American Chemical Society, 2016, 138, 11727-11733.	6.6	48
27	Palladium-Catalyzed Asymmetric Suzuki–Miyaura Cross Coupling with Homochiral Phosphine Ligands Having Tetrahydro-1H-imidazo[1,5-a]indole Backbone. Synthesis, 2016, 49, 59-68.	1.2	14
28	In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst. Scientific Reports, 2016, 6, 25925.	1.6	26
29	Application of Heterogeneous Polymer-Supported Catalysts to Continuous Flow Systems. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 621-630.	0.0	3
30	A Convoluted Polymeric Imidazole Palladium Catalyst: Structural Elucidation and Investigation of the Driving Force for the Efficient Mizoroki–Heck Reaction. ChemCatChem, 2015, 7, 2141-2148.	1.8	24
31	Instantaneous Click Chemistry by a Copperâ€Containing Polymericâ€Membraneâ€Installed Microflow Catalytic Reactor. Chemistry - A European Journal, 2015, 21, 17269-17273.	1.7	23
32	Production of Valuable Esters from Oleic Acid with a Porous Polymeric Acid Catalyst without Water Removal. Synlett, 2015, 27, 29-32.	1.0	5
33	A Palladiumâ€Nanoparticle and Siliconâ€Nanowireâ€Array Hybrid: A Platform for Catalytic Heterogeneous Reactions. Angewandte Chemie - International Edition, 2014, 53, 127-131.	7.2	116
34	Bimetallic Co–Pd alloy nanoparticles as magnetically recoverable catalysts for the aerobic oxidation of alcohols in water. Tetrahedron, 2014, 70, 6146-6149.	1.0	8
35	Driving an equilibrium acetalization to completion in the presence of water. RSC Advances, 2014, 4, 36864-36867.	1.7	10
36	Transfer hydrogenation of alkenes using Ni/Ru/Pt/Au heteroquatermetallic nanoparticle catalysts: sequential cooperation of multiple nano-metal species. Chemical Communications, 2014, 50, 12123-12126.	2.2	27

#	Article	IF	CITATIONS
37	Direct Dehydrative Esterification of Alcohols and Carboxylic Acids with a Macroporous Polymeric Acid Catalyst. Organic Letters, 2013, 15, 5798-5801.	2.4	63
38	Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow. Green Chemistry, 2013, 15, 2141.	4.6	96
39	Polymeric Bimetallic Catalyst-Promoted In-Water Dehydrative Alkylation of Ammonia and Amines with Alcohols. Synthesis, 2013, 45, 2093-2100.	1.2	34
40	Self-Assembled Poly(imidazole-palladium): Highly Active, Reusable Catalyst at Parts per Million to Parts per Billion Levels. Journal of the American Chemical Society, 2012, 134, 3190-3198.	6.6	218
41	Amphiphilic Self-Assembled Polymeric Copper Catalyst to Parts per Million Levels: Click Chemistry. Journal of the American Chemical Society, 2012, 134, 9285-9290.	6.6	187
42	Development of Polymeric Palladiumâ€Nanoparticle Membraneâ€Installed Microflow Devices and their Application in Hydrodehalogenation. ChemSusChem, 2012, 5, 293-299.	3.6	25
43	In-Water Dehydrative Alkylation of Ammonia and Amines with Alcohols by a Polymeric Bimetallic Catalyst. Organic Letters, 2011, 13, 3892-3895.	2.4	70
44	Highly Active Copperâ€Network Catalyst for the Direct Aldol Reaction. Chemistry - an Asian Journal, 2011, 6, 2545-2549.	1.7	8
45	A Highly Active and Reusable Selfâ€Assembled Poly(Imidazole/Palladium) Catalyst: Allylic Arylation/Alkenylation. Angewandte Chemie - International Edition, 2011, 50, 9437-9441.	7.2	90
46	Development of Polymeric Metal Catalysts via Molecular Convolution and of Catalytic Membrane-Installed Microflow Devices. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 542-551.	0.0	10
47	Assembled Catalysts of Titanium and Non-Cross-Linked Chiral Copolymers for an Enantioselective Carbonyl-ene Reaction ChemInform, 2010, 33, 23-23.	0.1	0
48	Palladium Membraneâ€Installed Microchannel Devices for Instantaneous Suzuki–Miyaura Cross oupling. Chemistry - A European Journal, 2010, 16, 11311-11319.	1.7	53
49	H ₂ O ₂ -Oxidation of Alcohols Promoted by Polymeric Phosphotungstate Catalysts. Organic Letters, 2010, 12, 4540-4543.	2.4	44
50	Chemoselective Oxidation of Sulfides Promoted by a Tightly Convoluted Polypyridinium Phosphotungstate Catalyst with H2. Bulletin of the Korean Chemical Society, 2010, 31, 547-548.	1.0	8
51	Asymmetric Suzuki–Miyaura Coupling in Water with a Chiral Palladium Catalyst Supported on an Amphiphilic Resin. Angewandte Chemie - International Edition, 2009, 48, 2708-2710.	7.2	223
52	Development of an amphiphilic resinâ€dispersion of nanopalladium and nanoplatinum catalysts: Design, preparation, and their use in green organic transformations. Chemical Record, 2009, 9, 51-65.	2.9	49
53	An Amphiphilic Resinâ€dispersion of Nanoparticles of Platinum (ARPâ€Pt): A Highly Active and Recyclable Catalyst for the Aerobic Oxidation of a Variety of Alcohols in Water. Chemistry - an Asian Journal, 2009, 4, 1092-1098.	1.7	28
54	Catalytic membrane-installed microchannel reactors for one-second allylic arylation. Chemical Communications, 2009, , 5594.	2.2	56

#	Article	IF	CITATIONS
55	Oxidative cyclization of alkenols with Oxone using a miniflow reactor. Beilstein Journal of Organic Chemistry, 2009, 5, 18.	1.3	12
56	Development of Tightly Convoluted Polymeric Phosphotungstate Catalysts and Their Application to an Oxidative Cyclization of Alkenols and Alkenoic Acids. Heterocycles, 2008, 76, 645.	0.4	7
57	Tightly Convoluted Polymeric Phosphotungstate Catalyst:  An Oxidative Cyclization of Alkenols and Alkenoic Acids. Organic Letters, 2007, 9, 1501-1504.	2.4	36
58	A Nanoplatinum Catalyst for Aerobic Oxidation of Alcohols in Water. Angewandte Chemie - International Edition, 2007, 46, 704-706.	7.2	203
59	Development of a convoluted polymeric nanopalladium catalyst: α-alkylation of ketones and ring-opening alkylation of cyclic 1,3-diketones with primary alcohols. Tetrahedron, 2007, 63, 8492-8498.	1.0	83
60	A Solid-Phase Self-Organized Catalyst of Nanopalladium with Main-Chain Viologen Polymers: α-Alkylation of Ketones with Primary Alcohols. Organic Letters, 2006, 8, 1375-1378.	2.4	160
61	Instantaneous Carbonâ~'Carbon Bond Formation Using a Microchannel Reactor with a Catalytic Membrane. Journal of the American Chemical Society, 2006, 128, 15994-15995.	6.6	154
62	Total Synthesis and Structural Elucidation of Azaspiracid-1. Final Assignment and Total Synthesis of the Correct Structure of Azaspiracid-1. Journal of the American Chemical Society, 2006, 128, 2859-2872.	6.6	94
63	Novel 3D Coordination Palladiumâ^'Network Complex:  A Recyclable Catalyst for Suzukiâ^'Miyaura Reactionâ€. Organic Letters, 2006, 8, 4259-4262.	2.4	78
64	Second-Generation Total Synthesis of Azaspiracids-1, -2, and -3. Chemistry - an Asian Journal, 2006, 1, 245-263.	1.7	36
65	Self-Assembled Complexes of Non-cross-linked Amphiphilic Polymeric Ligands with Inorganic Species: Highly Active and Reusable Solid-Phase Polymeric Catalysts. Chemical and Pharmaceutical Bulletin, 2005, 53, 723-739.	0.6	37
66	A Recyclable Catalytic System Based on a Temperature-Responsive Catalyst. Angewandte Chemie - International Edition, 2005, 44, 4536-4538.	7.2	107
67	Self-Assembled Complexes of Non-Cross-linked Amphiphilic Polymeric Ligands with Inorganic Species: Highly Active and Reusable Solid-Phase Polymeric Catalysts. ChemInform, 2005, 36, no.	0.1	0
68	A Recyclable Catalytic System Based on a Temperature-Responsive Catalyst ChemInform, 2005, 36, no.	0.1	0
69	Assembled catalyst of palladium and non-cross-linked amphiphilic polymer ligand for the efficient heterogeneous Heck reaction. Tetrahedron, 2004, 60, 4097-4105.	1.0	72
70	Structural Revision and Total Synthesis of Azaspiracid-1, Part 1: Intelligence Gathering and Tentative Proposal. Angewandte Chemie - International Edition, 2004, 43, 4312-4318.	7.2	95
71	Structural Revision and Total Synthesis of Azaspiracid-1, Part 2: Definition of the ABCD Domain and Total Synthesis. Angewandte Chemie - International Edition, 2004, 43, 4318-4324.	7.2	136
72	Cover Picture: Structural Revision and Total Synthesis of Azaspiracid-1, Part 1: Intelligence Gathering and Tentative Proposal (Angew. Chem. Int. Ed. 33/2004). Angewandte Chemie - International Edition, 2004, 43, 4239-4239.	7.2	0

#	Article	IF	CITATIONS
73	Highly Active Catalyst for the Heterogeneous Suzuki—Miyaura Reaction: Assembled Complex of Palladium and Non-Cross-Linked Amphiphilic Polymer ChemInform, 2004, 35, no.	0.1	0
74	Assembled Catalyst of Palladium and Non-cross-linked Amphiphilic Polymer Ligand for the Efficient Heterogeneous Heck Reaction ChemInform, 2004, 35, no.	0.1	0
75	Oxidation of Allylic Alcohols, Amines, and Sulfides Mediated by Assembled Triphase Catalyst of Phosphotungstate and Non-cross-linked Amphiphilic Copolymer ChemInform, 2004, 35, no.	0.1	О
76	Oxidation of allylic alcohols, amines, and sulfides mediated by assembled triphase catalyst of phosphotungstate and non-cross-linked amphiphilic copolymer. Tetrahedron, 2004, 60, 4087-4096.	1.0	60
77	An Assembled Complex of Palladium and Non-Cross-Linked Amphiphilic Polymer: A Highly Active and Recyclable Catalyst for the Suzuki—Miyaura Reaction ChemInform, 2003, 34, no.	0.1	Ο
78	An Efficient Heterogeneous Heck Reaction Promoted by a New Assembled Catalyst of Palladium and Non-Cross-Linked Amphiphilic Polymer ChemInform, 2003, 34, no.	0.1	0
79	An efficient heterogeneous Heck reaction promoted by a new assembled catalyst of palladium and non-cross-linked amphiphilic polymer. Tetrahedron Letters, 2003, 44, 2379-2382.	0.7	52
80	Highly Active Catalyst for the Heterogeneous Suzukiâ~'Miyaura Reaction:Â Assembled Complex of Palladium and Non-Cross-Linked Amphiphilic Polymer. Journal of Organic Chemistry, 2003, 68, 7733-7741.	1.7	166
81	An Assembled Complex of Palladium and Non-Cross-linked Amphiphilic Polymer:  A Highly Active and Recyclable Catalyst for the Suzukiâ^'Miyaura Reaction. Organic Letters, 2002, 4, 3371-3374.	2.4	117
82	Assembled catalysts of titanium and non-cross-linked chiral copolymers for an enantioselective carbonyl-ene reaction. Tetrahedron Letters, 2002, 43, 3431-3434.	0.7	36
83	Development of a New Triphase Catalyst and Its Application to the Epoxidation of Allylic Alcohols. Organic Letters, 2001, 3, 1837-1840.	2.4	62
84	Efficient Baylis–Hillman reactions promoted by mild cooperative catalysts and their application to catalytic asymmetric synthesis. Tetrahedron Letters, 2000, 41, 2165-2169.	0.7	174
85	Direct Catalytic Asymmetric Aldol Reaction. Journal of the American Chemical Society, 1999, 121, 4168-4178.	6.6	366
86	Direct catalytic asymmetric aldol reactions promoted by a novel barium complex. Tetrahedron Letters, 1998, 39, 5561-5564.	0.7	93
87	Development of Multifunctional Asymmetric Catalysts and Their Application to Practical Organic Synthesis Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1998, 56, 344-356.	0.0	19
88	Catalytic Asymmetric Synthesis of Arbutamine. Heterocycles, 1997, 46, 157.	0.4	50
89	The first tandem inter-intramolecular catalytic asymmetric nitroaldol reaction utilizing a LnLi3tris((R)-binaphthoxide) complex ((R)-LnLB) (Ln: Lanthanoid). Tetrahedron Letters, 1997, 38, 6031-6034.	0.7	49
90	Direct Catalytic Asymmetric Aldol Reactions of Aldehydes with Unmodified Ketones. Angewandte Chemie International Edition in English, 1997, 36, 1871-1873.	4.4	366

#	Article	IF	CITATIONS
91	Selfâ€Assembly of Heterobimetallic Complexes and Reactive Nucleophiles: A General Strategy for the Activation of Asymmetric Reactions Promoted by Heterobimetallic Catalysts. Chemistry - A European Journal, 1996, 2, 1368-1372.	1.7	226
92	Syntheses of (S)-(â^')-pindolol and [3′-13C]-(R)-(â^')-pindolol utilizing a lanthanum-lithium-(R)-BINOL ((R)-LLB) catalyzed nitroaldol reaction. Tetrahedron, 1994, 50, 12313-12318.	1.0	74
93	Microwave-Assisted Hydrogen-Free Reductive Deiodination of Iodoarenes with Silicon-Nanoarray Palladium-Nanoparticle Catalyst. Synlett, 0, , .	1.0	0