
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4263604/publications.pdf Version: 2024-02-01

FLIEN V ROTHENBERC

#	Article	IF	CITATIONS
1	Launching the T-cell-lineage developmental programme. Nature Reviews Immunology, 2008, 8, 9-21.	22.7	394
2	An Early T Cell Lineage Commitment Checkpoint Dependent on the Transcription Factor <i>Bcl11b</i> . Science, 2010, 329, 89-93.	12.6	329
3	Dynamic Transformations of Genome-wide Epigenetic Marking and Transcriptional Control Establish T Cell Identity. Cell, 2012, 149, 467-482.	28.9	313
4	Developmental and Molecular Characterization of Emerging β- and γδ-Selected Pre-T Cells in the Adult Mouse Thymus. Immunity, 2006, 24, 53-64.	14.3	278
5	Developmental gene networks: a triathlon on the course to T cell identity. Nature Reviews Immunology, 2014, 14, 529-545.	22.7	276
6	High frequency of aberrant expression of moloney murine leukemia virus in clonal infections. Cell, 1978, 14, 601-609.	28.9	249
7	MOLECULAR GENETICS OF T CELL DEVELOPMENT. Annual Review of Immunology, 2005, 23, 601-649.	21.8	240
8	Positive Feedback Between PU.1 and the Cell Cycle Controls Myeloid Differentiation. Science, 2013, 341, 670-673.	12.6	238
9	GATA-3 Expression Is Controlled by TCR Signals and Regulates CD4/CD8 Differentiation. Immunity, 2003, 19, 83-94.	14.3	223
10	cAMP inhibits induction of interleukin 2 but not of interleukin 4 in T cells Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 9353-9357.	7.1	209
11	Ordered transcription of RNA tumor virus genomes. Journal of Molecular Biology, 1976, 106, 109-131.	4.2	194
12	Transformation of Accessible Chromatin and 3D Nucleome Underlies Lineage Commitment of Early T Cells. Immunity, 2018, 48, 227-242.e8.	14.3	188
13	Lck Activity Controls CD4/CD8 T Cell Lineage Commitment. Immunity, 2000, 12, 313-322.	14.3	176
14	Transcriptional Control of Early T and B Cell Developmental Choices. Annual Review of Immunology, 2014, 32, 283-321.	21.8	176
15	A dynamic assembly of diverse transcription factors integrates activation and cell-type information for interleukin 2 gene regulation Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9358-9365.	7.1	175
16	Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nature Immunology, 2007, 8, 845-855.	14.5	175
17	Analysis of a 5′ leader sequence on murine leukemia virus 21S RNA: Heteroduplex mapping with long reverse transcriptase products. Cell, 1978, 13, 435-451.	28.9	169
18	The Development of Functionally Responsive T Cells. Advances in Immunology, 1992, 51, 85-214.	2.2	160

#	Article	IF	CITATIONS
19	Constitutive Expression of PU.1 in Fetal Hematopoietic Progenitors Blocks T Cell Development at the Pro-T Cell Stage. Immunity, 2002, 16, 285-296.	14.3	151
20	How transcription factors drive choice of the T cell fate. Nature Reviews Immunology, 2021, 21, 162-176.	22.7	142
21	Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes and Development, 2005, 19, 965-978.	5.9	141
22	Synthesis of Long, Representative DNA Copies of the Murine RNA Tumor Virus Genome. Journal of Virology, 1976, 17, 168-174.	3.4	139
23	Fine-Scale Staging of T Cell Lineage Commitment in Adult Mouse Thymus. Journal of Immunology, 2010, 185, 284-293.	0.8	132
24	Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment. Nature Immunology, 2016, 17, 956-965.	14.5	119
25	A far downstream enhancer for murine Bcl11b controls its T-cell specific expression. Blood, 2013, 122, 902-911.	1.4	109
26	TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nature Immunology, 2017, 18, 45-53.	14.5	108
27	In vitro synthesis of infectious DNA of murine leukaemia virus. Nature, 1977, 269, 122-126.	27.8	100
28	Notch/Delta signaling constrains reengineering of pro-T cells by PU.1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11993-11998.	7.1	100
29	Differentiation and cell division in the mammalian thymus. Developmental Biology, 1985, 112, 1-17.	2.0	89
30	Molecular Dissection of Prethymic Progenitor Entry into the T Lymphocyte Developmental Pathway. Journal of Immunology, 2007, 179, 421-438.	0.8	89
31	Regulatory anatomy of the murine interleukin-2 gene. Nucleic Acids Research, 1990, 18, 4523-4533.	14.5	88
32	A gene regulatory network armature for T lymphocyte specification. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20100-20105.	7.1	87
33	Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. Development (Cambridge), 2013, 140, 1207-1219.	2.5	83
34	Bcl11b sets pro-T cell fate by site-specific cofactor recruitment and by repressing Id2 and Zbtb16. Nature Immunology, 2018, 19, 1427-1440.	14.5	83
35	Transcription Factor PU.1 Represses and Activates Gene Expression in Early T Cells by Redirecting Partner Transcription Factor Binding. Immunity, 2018, 48, 1119-1134.e7.	14.3	83
36	Chromatin remodeling of the interleukin-2 gene: Distinct alterations in the proximal versus distal enhancer regions. Nucleic Acids Research, 1998, 26, 2923-2934.	14.5	82

#	Article	IF	CITATIONS
37	Expression and Function of a Stem Cell Promoter for the Murine CBFα2 Gene: Distinct Roles and Regulation in Natural Killer and T Cell Development. Developmental Biology, 2001, 229, 363-382.	2.0	82
38	Localization of the Domains in Runx Transcription Factors Required for the Repression of CD4 in Thymocytes. Journal of Immunology, 2004, 172, 4359-4370.	0.8	82
39	Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire. International Immunology, 2001, 13, 567-580.	4.0	81
40	Single-Cell Analysis Reveals Regulatory Gene Expression Dynamics Leading to Lineage Commitment in Early T Cell Development. Cell Systems, 2019, 9, 321-337.e9.	6.2	80
41	Negotiation of the T Lineage Fate Decision by Transcription-Factor Interplay and Microenvironmental Signals. Immunity, 2007, 26, 690-702.	14.3	78
42	T Cell Lineage Commitment: Identity and Renunciation. Journal of Immunology, 2011, 186, 6649-6655.	0.8	77
43	Bcl11b and combinatorial resolution of cell fate in the T-cell gene regulatory network. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5800-5807.	7.1	75
44	Stepwise specification of lymphocyte developmental lineages. Current Opinion in Genetics and Development, 2000, 10, 370-379.	3.3	74
45	Definition of Regulatory Network Elements for T Cell Development by Perturbation Analysis with PU.1 and GATA-3. Developmental Biology, 2002, 246, 103-121.	2.0	74
46	A developmental transition in definitive erythropoiesis: erythropoietin expression is sequentially regulated by retinoic acid receptors and HNF4. Genes and Development, 2001, 15, 889-901.	5.9	72
47	A stochastic epigenetic switch controls the dynamics of T-cell lineage commitment. ELife, 2018, 7, .	6.0	70
48	A New Regulatory Region of the IL-2 Locus That Confers Position-Independent Transgene Expression. Journal of Immunology, 2001, 166, 1730-1739.	0.8	69
49	Preferential Activation of an IL-2 Regulatory Sequence Transgene in TCRγδ and NKT Cells: Subset-Specific Differences in IL-2 Regulation. Journal of Immunology, 2004, 172, 4691-4699.	0.8	69
50	Core binding factors are necessary for natural killer cell development and cooperate with Notch signaling during T-cell specification. Blood, 2008, 112, 480-492.	1.4	68
51	Genetic polymorphism of murinel̂² 2-microglobulin detected biochemically. Immunogenetics, 1980, 11-11, 93-95.	2.4	67
52	Multilayered specification of the Tâ€cell lineage fate. Immunological Reviews, 2010, 238, 150-168.	6.0	67
53	Transcriptional drivers of the T-cell lineage program. Current Opinion in Immunology, 2012, 24, 132-138.	5.5	66
54	The Basic Helix-Loop-Helix Transcription Factor HEBAlt Is Expressed in Pro-T Cells and Enhances the Generation of T Cell Precursors. Journal of Immunology, 2006, 177, 109-119.	0.8	65

#	Article	IF	CITATIONS
55	GATA-3 Dose-Dependent Checkpoints in Early T Cell Commitment. Journal of Immunology, 2014, 193, 3470-3491.	0.8	65
56	Forging T-Lymphocyte Identity. Advances in Immunology, 2016, 129, 109-174.	2.2	65
57	Cytokines, Transcription Factors, and the Initiation of T-Cell Development. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028621.	5.5	64
58	Transcription factor expression dynamics of early T-lymphocyte specification and commitment. Developmental Biology, 2009, 325, 444-467.	2.0	63
59	The chromatin landscape and transcription factors in T cell programming. Trends in Immunology, 2014, 35, 195-204.	6.8	63
60	Progression of regulatory gene expression states in fetal and adult proâ€Tâ€cell development. Immunological Reviews, 2006, 209, 212-236.	6.0	62
61	Heteroduplex analysis of the nonhomology region between Moloney MuLV and the dual host range derivative HIX virus. Cell, 1978, 14, 959-970.	28.9	61
62	Regulation of early T-lineage gene expression and developmental progression by the progenitor cell transcription factor PU.1. Genes and Development, 2015, 29, 832-848.	5.9	59
63	Mechanisms of Action of Hematopoietic Transcription Factor PU.1 in Initiation of T-Cell Development. Frontiers in Immunology, 2019, 10, 228.	4.8	58
64	Regulatory coding of lymphoid lineage choice by hematopoietic transcription factors. Current Opinion in Immunology, 2003, 15, 166-175.	5.5	57
65	GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate. Nature Communications, 2016, 7, 11171.	12.8	57
66	Pioneering, chromatin remodeling, and epigenetic constraint in early T-cell gene regulation by SPI1 (PU.1). Genome Research, 2018, 28, 1508-1519.	5.5	56
67	Differential Transcriptional Regulation of Individual TCR Vβ Segments Before Gene Rearrangement. Journal of Immunology, 2001, 166, 1771-1780.	0.8	53
68	Molecular mechanisms that control mouse and human TCR-αβ and TCR-γδT cell development. Seminars in Immunopathology, 2008, 30, 383-398.	6.1	53
69	Programming for T-lymphocyte fates: modularity and mechanisms. Genes and Development, 2019, 33, 1117-1135.	5.9	52
70	Subversion of T lineage commitment by PU.1 in a clonal cell line system. Developmental Biology, 2005, 280, 448-466.	2.0	51
71	Cell lineage regulators in B and T cell development. Nature Immunology, 2007, 8, 441-444.	14.5	51
72	Cell-Type-Specific Activation and Repression of PU.1 by a Complex of Discrete, Functionally Specialized <i>cis</i> -Regulatory Elements. Molecular and Cellular Biology, 2010, 30, 4922-4939.	2.3	48

#	Article	IF	CITATIONS
73	Lineage plasticity and commitment in T-cell development. Immunological Reviews, 2002, 187, 96-115.	6.0	47
74	Multiclass Weighted Loss for Instance Segmentation of Cluttered Cells. , 2018, , .		47
75	Cell type–specific actions of Bcl11b in early T-lineage and group 2 innate lymphoid cells. Journal of Experimental Medicine, 2020, 217, .	8.5	45
76	A two-amino-acid substitution in the transcription factor RORÎ ³ t disrupts its function in TH17 differentiation but not in thymocyte development. Nature Immunology, 2017, 18, 1128-1138.	14.5	44
77	Proliferation of thymic stem cells with and without receptors for interleukin 2. Implications for intrathymic antigen recognition Journal of Experimental Medicine, 1985, 161, 1048-1062.	8.5	43
78	Evolutionary Origins of Lymphocytes: Ensembles of T Cell and B Cell Transcriptional Regulators in a Cartilaginous Fish. Journal of Immunology, 2004, 172, 5851-5860.	0.8	43
79	Death and transfiguration of cortical thymocytes: a reconsideration. Trends in Immunology, 1990, 11, 116-119.	7.5	42
80	Transcriptional regulation of lymphocyte lineage commitment. BioEssays, 1999, 21, 726-742.	2.5	40
81	Cell-type-specific epigenetic marking of the IL2 gene at a distal cis-regulatory region in competent, nontranscribing T-cells. Nucleic Acids Research, 2005, 33, 3200-3210.	14.5	40
82	How T Cells Count. Science, 1996, 273, 78-0.	12.6	37
83	Elements of Transcription Factor Network Design for T-Lineage Specification. Developmental Biology, 2002, 246, 29-44.	2.0	36
84	Competition and collaboration: GATA-3, PU.1, and Notch signaling in early T-cell fate determination. Seminars in Immunology, 2008, 20, 236-246.	5.6	36
85	Regulatory gene network circuits underlying T cell development from multipotent progenitors. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 79-102.	6.6	36
86	Cross-lineage expression of Ig-Â (B29) in thymocytes: Positive and negative gene regulation to establish T cell identity. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6831-6836.	7.1	35
87	Origins of lymphocyte developmental programs: transcription factor evidence. Seminars in Immunology, 2004, 16, 227-238.	5.6	35
88	Hematopoiesis and Tâ€cell specification as a model developmental system. Immunological Reviews, 2016, 271, 72-97.	6.0	35
89	Computational modelling of T-cell formation kinetics: output regulated by initial proliferation-linked deferral of developmental competence. Journal of the Royal Society Interface, 2013, 10, 20120774.	3.4	33
90	Runx1 and Runx3 drive progenitor to T-lineage transcriptome conversion in mouse T cell commitment via dynamic genomic site switching. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33

#	Article	IF	CITATIONS
91	Expression of differentiation antigens in subpopulations of mouse thymocytes: Regulation at the level of de novo synthesis. Cell, 1980, 20, 1-9.	28.9	32
92	T-lineage specification and commitment: a gene regulation perspective. Seminars in Immunology, 2002, 14, 431-440.	5.6	30
93	Deranged Early T Cell Development in Immunodeficient Strains of Nonobese Diabetic Mice. Journal of Immunology, 2004, 173, 5381-5391.	0.8	29
94	Spontaneous Expression of Interleukin-2 <i>In Vivo</i> in Specific Tissues of Young Mice. Autoimmunity, 1998, 5, 223-245.	0.6	28
95	Evolution of hematopoiesis: Three members of the PU.1 transcription factor family in a cartilaginous fish, Raja eglanteria. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 553-558.	7.1	27
96	Molecular Indices of Functional Competence in Developing T Cells. Immunological Reviews, 1988, 104, 29-53.	6.0	26
97	lkaros represses and activates PU.1 cell-type-specifically through the multifunctional Sfpi1 URE and a myeloid specific enhancer. Oncogene, 2012, 31, 4647-4654.	5.9	25
98	Precocious expression of T cell functional response genes in vivo in primitive thymocytes before T lineage commitment. International Immunology, 1998, 10, 1623-1635.	4.0	24
99	Notch2 complements Notch1 to mediate inductive signaling that initiates early T cell development. Journal of Cell Biology, 2020, 219, .	5.2	24
100	Single-cell deletion analyses show control of pro–T cell developmental speed and pathways by Tcf7, Spi1, Gata3, Bcl11a, Erg, and Bcl11b. Science Immunology, 2022, 7, .	11.9	20
101	Specific regulation of Fos family transcription factors in thymocytes at two developmental checkpoints. International Immunology, 1999, 11, 677-688.	4.0	19
102	Single-cell insights into the hematopoietic generation of T-lymphocyte precursors in mouse and human. Experimental Hematology, 2021, 95, 1-12.	0.4	19
103	Structure and expression of glycoproteins controlled by the Qa-1 a allele. Immunogenetics, 1981, 14, 455-468.	2.4	18
104	Differential Transient and Long-Term Expression of DNA Sequences Introduced into T-Lymphocyte Lines. DNA and Cell Biology, 1986, 5, 439-451.	5.2	18
105	Developmental and Anatomical Patterns Of IL-2 Gene Expression <i>in Vivo</i> in The Murine Thymus. Autoimmunity, 1993, 3, 85-102.	0.6	17
106	Causal Gene Regulatory Network Modeling and Genomics: Second-Generation Challenges. Journal of Computational Biology, 2019, 26, 703-718.	1.6	17
107	Transcription Factor Expression in Lymphocyte Development: Clues to the Evolutionary Origins of Lymphoid Cell Lineages?. Current Topics in Microbiology and Immunology, 2000, 248, 137-155.	1.1	17
108	Costimulation by interleukin-1 of multiple activation responses in a developmentally restricted subset of immature thymocytes. European Journal of Immunology, 1994, 24, 24-33.	2.9	15

#	Article	IF	CITATIONS
109	Notchless T cell maturation?. Nature Immunology, 2001, 2, 189-190.	14.5	15
110	Regulatory factors for initial T lymphocyte lineage specification. Current Opinion in Hematology, 2007, 14, 322-329.	2.5	14
111	Transcriptional Establishment of Cell-Type Identity: Dynamics and Causal Mechanisms of T-Cell Lineage Commitment. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 31-41.	1.1	14
112	T-Cell Identity and Epigenetic Memory. Current Topics in Microbiology and Immunology, 2011, 356, 117-143.	1.1	13
113	Epigenetic Dynamics in the Function of T-Lineage Regulatory Factor Bcl11b. Frontiers in Immunology, 2021, 12, 669498.	4.8	12
114	Mapping of complex regulatory elements by pufferfish/zebrafish transgenesis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6540-6542.	7.1	11
115	Lineage Divergence at the First TCR-Dependent Checkpoint: Preferential γÎ′ and Impaired αβ T Cell Development in Nonobese Diabetic Mice. Journal of Immunology, 2011, 186, 826-837.	0.8	11
116	Dynamic control of the T-cell specification gene regulatory network. Current Opinion in Systems Biology, 2019, 18, 62-76.	2.6	11
117	Stage-specific action of Runx1 and GATA3 controls silencing of PU.1 expression in mouse pro–T cells. Journal of Experimental Medicine, 2021, 218, .	8.5	11
118	Signaling mechanisms in thymocyte selection. Current Opinion in Immunology, 1994, 6, 257-265.	5.5	10
119	Epigenetic mechanisms and developmental choice hierarchies in T-lymphocyte development. Briefings in Functional Genomics, 2013, 12, 512-524.	2.7	9
120	Irreversibility of T-Cell Specification: Insights from Computational Modelling of a Minimal Network Architecture. PLoS ONE, 2016, 11, e0161260.	2.5	9
121	Multi-scale Dynamical Modeling of T Cell Development from an Early Thymic Progenitor State to Lineage Commitment. Cell Reports, 2021, 34, 108622.	6.4	9
122	Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophysical Journal, 2021, 120, 4162-4181.	0.5	9
123	Radiation leukemia virus and X-irradiation induce in C57BL/6 mice two distinct T-cell neoplasms: A growth factor-dependent lymphoma and a growth factor-independent lymphoma. Leukemia Research, 1987, 11, 223-239.	0.8	8
124	Lineage determination in the immune system. Immunological Reviews, 2010, 238, 5-11.	6.0	8
125	GATA-3 locks the door to the B-cell option. Blood, 2013, 121, 1673-1674.	1.4	7
126	Decision by committee: new light on the CD4/CD8â€lineage choice. Immunology and Cell Biology, 2009, 87, 109-112.	2.3	6

#	Article	IF	CITATIONS
127	Multiple Curricula for B Cell Developmental Programming. Immunity, 2016, 45, 457-458.	14.3	6
128	Acquisition of Mature Functional Responsiveness in T Cells: Programming for Function via Signaling. Advances in Experimental Medicine and Biology, 1991, 292, 71-83.	1.6	6
129	Gene Regulation in T-Cell Lineage Commitment. , 1998, , 337-365.		6
130	From totipotency to T in a dish. Nature Immunology, 2004, 5, 359-360.	14.5	5
131	Loss of T Cell Progenitor Checkpoint Control Underlies Leukemia Initiation in Rag1-Deficient Nonobese Diabetic Mice. Journal of Immunology, 2013, 190, 3276-3288.	0.8	5
132	How haematopoiesis research became a fertile ground for regulatory network biology as pioneered by Eric Davidson. Current Opinion in Hematology, 2021, 28, 1-10.	2.5	5
133	The long road to functional maturity for developing T cells. Trends in Immunology, 1989, 10, 116-117.	7.5	4
134	Building a Human Thymus: A Pointillist View. Immunity, 2019, 51, 788-790.	14.3	4
135	B cell specification from the genome up. Nature Immunology, 2010, 11, 572-574.	14.5	3
136	Fitting structure to function in gene regulatory networks. History and Philosophy of the Life Sciences, 2017, 39, 37.	1.1	3
137	Encounters across networks: Windows into principles of genomic regulation. Marine Genomics, 2019, 44, 3-12.	1.1	3
138	In vitro maintenance of differentiation marker synthesis by subpopulations of mouse thymocytes. Journal of Supramolecular Structure, 1980, 14, 371-382.	2.3	2
139	Differential regulation of T cell receptor gamma genes in immature thymocyte populations. European Journal of Immunology, 1987, 17, 1265-1269.	2.9	2
140	Developmental shifts in signaling pathways for lymphokine production and growth response. Research in Immunology, 1990, 141, 289-293.	0.9	2
141	Cell separation and analysis: A strategic overview. Methods, 1991, 2, 168-172.	3.8	2
142	IMMUNOLOGY: Enhanced: Thymic Regulation-Hidden in Plain Sight. Science, 2005, 307, 858-859.	12.6	2
143	Erg in stem cells: a function emerges. Nature Immunology, 2008, 9, 714-716.	14.5	2
144	Illuminating the core of adaptive immunity—how the regulatory genome controls <i>Rag</i> chromatin dynamics. Science Immunology, 2020, 5, .	11.9	2

#	Article	IF	CITATIONS
145	Regulatory Co-options in the Evolution of Deuterostome Immune Systems. , 0, , 61-88.		2
146	What is the role of T-lymphocyte surveillance in neoplastic disease?. American Journal of Surgery, 1982, 143, 664-669.	1.8	1
147	Immune Cell Identity: Perspective from a Palimpsest. Perspectives in Biology and Medicine, 2015, 58, 205-228.	0.5	1
148	Editorial overview. Current Opinion in Immunology, 2010, 22, 145-147.	5.5	0
149	Transcriptional and epigenetic thresholds for entry to the T-cell developmental program. Experimental Hematology, 2013, 41, S8.	0.4	0
150	Developmental biologist Eric H. Davidson, 1937–2015. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13423-13425.	7.1	0
151	The Role of E Protein Heterodimer Partner Switching in Determining Chromatin Landscape and T Cell Fate Commitment in Mouse Early T Cell Development. Experimental Hematology, 2018, 64, S109.	0.4	0
152	Regulation of genomic activity in T-lymphocyte development by dynamic transcription factor ensembles. Experimental Hematology, 2018, 64, S30-S31.	0.4	0
153	Reduction of Core Binding Factor beta (CBFβ) Dosage Blocks T Cell Development Blood, 2005, 106, 2714-2714.	1.4	0
154	Molecular Analysis of Tâ€lineage Commitment: a possible role for Bcl11b. FASEB Journal, 2008, 22, 844.6.	0.5	0
155	Transcriptional Regulation of T Cell Lineage Commitment. , 2016, , 201-210.		0
156	Immunology. Thymic regulationhidden in plain sight. Science, 2005, 307, 858-9.	12.6	0