

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4263499/publications.pdf Version: 2024-02-01

XIN VII

#	Article	IF	CITATIONS
1	Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection. Optics Express, 2018, 26, 32103.	3.4	215
2	Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell. Optics Letters, 2019, 44, 1904.	3.3	108
3	Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork. Applied Physics Letters, 2017, 110, .	3.3	107
4	Ultra-high sensitive trace gas detection based on light-induced thermoelastic spectroscopy and a custom quartz tuning fork. Applied Physics Letters, 2020, 116, .	3.3	90
5	HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork. Sensors and Actuators B: Chemical, 2016, 233, 388-393.	7.8	76
6	Multi-quartz-enhanced photoacoustic spectroscopy. Applied Physics Letters, 2015, 107, .	3.3	59
7	Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser. Optics Express, 2019, 27, 14163.	3.4	57
8	Ppb-level detection of ammonia based on QEPAS using a power amplified laser and a low resonance frequency quartz tuning fork. Optics Express, 2017, 25, 29356.	3.4	47
9	Long distance, distributed gas sensing based on micro-nano fiber evanescent wave quartz-enhanced photoacoustic spectroscopy. Applied Physics Letters, 2017, 111, .	3.3	44
10	Compact all-fiber quartz-enhanced photoacoustic spectroscopy sensor with a 30.72 kHz quartz tuning fork and spatially resolved trace gas detection. Applied Physics Letters, 2016, 108, .	3.3	41
11	Analysis of combustion instability of hydrogen fueled scramjet combustor on high-speed OH-PLIF measurements and dynamic mode decomposition. International Journal of Hydrogen Energy, 2020, 45, 13108-13118.	7.1	35
12	Quartz Enhanced Photoacoustic Spectroscopy Based Trace Gas Sensors Using Different Quartz Tuning Forks. Sensors, 2015, 15, 7596-7604.	3.8	33
13	Study on the combustion behaviours of two high-volatile coal particle streams with high-speed OH-PLIF. Fuel, 2020, 265, 116956.	6.4	23
14	A Sensitive Carbon Dioxide Sensor Based on Photoacoustic Spectroscopy with a Fixed Wavelength Quantum Cascade Laser. Sensors, 2019, 19, 4187.	3.8	18
15	Sensitive detection of carbon monoxide based on a QEPAS sensor with a 2.3 <i>μ</i> m fiber-coupled antimonide diode laser. Journal of Optics (United Kingdom), 2015, 17, 055401.	2.2	17
16	Diagnosis and staging of multiple myeloma using serum-based laser-induced breakdown spectroscopy combined with machine learning methods. Biomedical Optics Express, 2021, 12, 3584.	2.9	16
17	A Sensitive Carbon Monoxide Sensor Based on Photoacoustic Spectroscopy with a 2.3 μm Mid-Infrared High-Power Laser and Enhanced Gas Absorption. Sensors, 2019, 19, 3202.	3.8	14
18	Combustion oscillation characteristics of a supersonic ethylene jet flame using high-speed planar laser-induced fluorescence and dynamic mode decomposition. Energy, 2022, 239, 122330.	8.8	14

Xin Yu

#	Article	IF	CITATIONS
19	High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance. Sensors, 2018, 18, 122.	3.8	13
20	Quartz-Enhanced Photoacoustic Spectroscopy Sensor with a Small-Gap Quartz Tuning Fork. Sensors, 2018, 18, 2047.	3.8	13
21	Experimental study of flame evolution, frequency and oscillation characteristics of steam diluted micro-mixing hydrogen flame. Fuel, 2021, 301, 121078.	6.4	13
22	Enhancement of a laminar premixed methane/oxygen/nitrogen flame speed using femtosecond-laser-induced plasma. Applied Physics Letters, 2010, 97, 011503.	3.3	12
23	Laser ablation ignition of premixed methane and oxygen-enriched air mixtures using a tantalum target. Optics Letters, 2014, 39, 139.	3.3	11
24	Repetitive Laser-Induced Plasma Ignition and Assisted Combustion of Premixed Methane/Air Flame. Combustion Science and Technology, 2017, 189, 1681-1697.	2.3	11
25	Oscillation characterization of volatile combustion of single coal particles with multi-species optical diagnostic techniques. Fuel, 2020, 282, 118845.	6.4	10
26	Plasma-assisted combustion of methane using a femtosecond laser. Optics Letters, 2011, 36, 1930.	3.3	9
27	Stabilization of a premixed CH_4/O_2/N_2 flame using femtosecond laser-induced plasma. Optics Letters, 2012, 37, 2106.	3.3	8
28	Stabilization of a premixed methane-air flame with a high repetition nanosecond laser-induced plasma. Optics and Laser Technology, 2017, 92, 24-31.	4.6	8
29	Investigation of mineral-element migration upon pyrolysis and quantitative prediction of volatiles in coal using laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2021, 36, 1399-1409.	3.0	8
30	Flame characteristics of a cavity-based scramjet combustor using OH-PLIF and feature extraction. International Journal of Hydrogen Energy, 2022, 47, 20662-20675.	7.1	7
31	Statistical Analysis of Volatile Combustion Time-Characteristics of Single Coal Particles Using High-Speed OH-PLIF. Energy & Fuels, 2019, 33, 12742-12748.	5.1	6
32	Continuous 100 Hz planar laser-induced fluorescence applied to the study of combustion processes. Spectroscopy Letters, 2017, 50, 265-269.	1.0	5
33	Laser ablation plasma-assisted stabilization of premixed methane/air flame. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	4
34	Two-dimensional temperature characteristics of syngas flames with nitrogen, carbon dioxide, and steam diluents by planar laser-induced fluorescence thermometry. Spectroscopy Letters, 2016, 49, 482-490.	1.0	2
35	Stabilization of Premixed High Flow Speed Methane/air Flames Using a Nanosecond Laser Induced Plasma. , 2015, , .		2
36	Flame features and oscillation characteristics in near-blowout swirl-stabilized flames using high-speed OH-PLIF and mode decomposition methods. Chinese Journal of Aeronautics, 2023, 36, 191-200.	5.3	2

Xin Yu

#	Article	IF	CITATIONS
37	Visualization study on vortex structure over an airfoil using planar laser induced fluorescence. Spectroscopy Letters, 2018, 51, 367-372.	1.0	1
38	Ignition and Stabilization of a Premixed Methane/air Flame with Repetitive Laser-Induced Plasmas. , 2017, , ,		1
39	100ÂkHz Narrow-Linewidth Burst-Mode MOPA Laser System With Uniform Envelope. Frontiers in Physics, 0, 10, .	2.1	1
40	High Power CW and A-O Q-switched Operation of 912 nm Nd:GdVO <inf>4</inf> Laser. , 2007, ,		0