Vincent Verney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4263400/publications.pdf

Version: 2024-02-01

		236925	315739
100	1,983	25	38
papers	citations	h-index	g-index
101	101	101	2001
101	101	101	2081
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Identification of important abiotic and biotic factors in the biodegradation of poly(I-lactic acid). International Journal of Biological Macromolecules, 2014, 71, 155-162.	7.5	79
2	Time-temperature superposition and linear viscoelasticity of polybutadienes. Macromolecules, 1995, 28, 7051-7057.	4.8	78
3	Structure evolution of \hat{l}_{\pm} - and \hat{l}_{\pm} -polypropylenes upon UV irradiation: A multiscale comparison. Polymer Degradation and Stability, 2005, 88, 532-539.	5.8	68
4	Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering. Chemosphere, 2012, 88, 1214-1219.	8.2	63
5	Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens. International Biodeterioration and Biodegradation, 2018, 132, 259-267.	3.9	62
6	Unusual Polystyrene Nanocomposite Structure Using Emulsifier-Modified Layered Double Hydroxide as Nanofiller. Chemistry of Materials, 2008, 20, 4854-4860.	6.7	60
7	Ex-ante life cycle assessment of polymer nanocomposites using organo-modified layered double hydroxides for potential application in agricultural films. Green Chemistry, 2014, 16, 4969-4984.	9.0	49
8	Thermal (DSC) and chemical (iodometric titration) methods for peroxides measurements in order to monitor drying extent of alkyd resins. Progress in Organic Coatings, 2001, 41, 171-176.	3.9	47
9	Porphyrin-layered double hydroxide/polymer composites as novel ecological photoactive surfaces. Journal of Materials Chemistry, 2010, 20, 9423.	6.7	46
10	Lignosulfonate interleaved layered double hydroxide: A novel green organoclay for bio-related polymer. Applied Clay Science, 2013, 71, 42-48.	5.2	46
11	Photostability and photobactericidal properties of porphyrin-layered double hydroxide–polyurethane composite films. Journal of Materials Chemistry B, 2013, 1, 2139.	5.8	45
12	Improving laccase thermostability with aqueous natural deep eutectic solvents. International Journal of Biological Macromolecules, 2020, 163, 919-926.	7.5	44
13	Functionalisation of polybutylene succinate nanocomposites: from structure to reinforcement of UV-absorbing and mechanical properties. RSC Advances, 2012, 2, 5430.	3.6	43
14	Molecular changes during natural biopolymer ageing – The case of shellac. Polymer Degradation and Stability, 2012, 97, 936-940.	5.8	40
15	Deconvolution of polymer melt stress relaxation by the Padé–Laplace method. Journal of Rheology, 1993, 37, 17-34.	2.6	37
16	Photo-Rheometry/NIR Spectrometry: An in situ Technique for Monitoring Conversion and Viscoelastic Properties during Photopolymerization. Macromolecular Rapid Communications, 2004, 25, 1155-1158.	3.9	37
17	Strong interfacial attrition developed by oleate/layered double hydroxide nanoplatelets dispersed into poly(butylene succinate). Journal of Colloid and Interface Science, 2010, 349, 127-133.	9.4	33
18	Poly(Lactic Acid)-Based Nanobiocomposites with Modulated Degradation Rates. Materials, 2018, 11, 1943.	2.9	33

#	Article	IF	CITATIONS
19	About the end life of novel aliphatic and aliphatic-aromatic (co)polyesters after UV-weathering: Structure/degradability relationships. Polymer Degradation and Stability, 2013, 98, 1321-1328.	5.8	32
20	Study on photodegradation of injection-moulded \hat{l}^2 -polypropylenes. Polymer Degradation and Stability, 2006, 91, 459-463.	5.8	31
21	Photodegradation and Biodegradation of Poly(Lactic) Acid Containing Orotic Acid as a Nucleation Agent. Materials, 2019, 12, 481.	2.9	31
22	Accelerated Biodegradation of Agriculture Film Based on Aromatic–Aliphatic Copolyester in Soil under Mesophilic Conditions. Journal of Agricultural and Food Chemistry, 2016, 64, 5653-5661.	5.2	29
23	The role of specific nucleation in polypropylene photodegradation. Polymer Degradation and Stability, 2007, 92, 1763-1768.	5.8	26
24	LDH–dye hybrid material as coloured filler into polystyrene: Structural characterization and rheological properties. Journal of Physics and Chemistry of Solids, 2007, 68, 1140-1146.	4.0	26
25	UV initiated oxidation and chemiluminescence from aromatic–aliphatic co-polyesters and polylactic acid. Polymer Degradation and Stability, 2013, 98, 2556-2563.	5.8	26
26	Percolation network of organo-modified layered double hydroxide platelets into polystyrene showing enhanced rheological and dielectric behavior. Journal of Materials Chemistry, 2010, 20, 9484.	6.7	25
27	Poly(butylene succinate)/layered double hydroxide bionanocomposites: Relationships between chemical structure of LDH anion, delamination strategy, and final properties. Journal of Applied Polymer Science, 2013, 130, 1931-1940.	2.6	25
28	Toward greener polyolefins: Antioxidant effect of phytic acid from cereal waste. European Polymer Journal, 2017, 96, 190-199.	5.4	25
29	Step-scan FTIR and photoacoustic detection to assess depth profile of photooxidized polymer. Vibrational Spectroscopy, 2001, 26, 43-49.	2.2	24
30	Reactive and functionalized LDH fillers for polymer. Journal of Physics and Chemistry of Solids, 2008, 69, 1362-1366.	4.0	24
31	Novel copolyesters based on poly(alkylene dicarboxylate)s: 2. Thermal behavior and biodegradation of fully aliphatic random copolymers containing 1,4-cyclohexylene rings. European Polymer Journal, 2009, 45, 2402-2412.	5.4	24
32	Exfoliation and liquid crystal phase formation of layered double hydroxide into waterborne polyurethane coatings. Soft Matter, 2011, 7, 4242.	2.7	24
33	Effect of annealing temperature on phase composition and tensile properties in isotactic poly(1â€butene). Journal of Applied Polymer Science, 2012, 124, 3407-3412.	2.6	24
34	Preparation of microfibers from wood/ionic liquid solutions. Carbohydrate Polymers, 2013, 92, 214-217.	10.2	24
35	Rheological behavior of polyolefins during UV irradiation at high temperature as a coupled degradative process. European Polymer Journal, 2015, 72, 1-11.	5.4	24
36	Photochemical reactivity of PLA at the vicinity of glass transition temperature. The photo-rheology method. European Polymer Journal, 2016, 81, 239-246.	5.4	24

#	Article	IF	CITATIONS
37	Ability of Trichoderma hamatum Isolated from Plastics-Polluted Environments to Attack Petroleum-Based, Synthetic Polymer Films. Processes, 2020, 8, 467.	2.8	23
38	X-ray diffraction and rheology cross-study of polymer chain penetrating surfactant tethered layered double hydroxide resulting into intermixed structure with polypropylene, poly(butylene)succinate and poly(dimethyl)siloxane. Applied Clay Science, 2014, 100, 102-111.	5.2	22
39	Photooxidation of polyoctenamer: viscoelastic assessment of gel formation. Polymer, 2000, 41, 917-923.	3.8	21
40	A differential scanning calorimetry method to study polymer photoperoxidation. Polymer Testing, 2001, 20, 765-768.	4.8	21
41	Novel copolyesters based on poly(alkylene dicarboxylate)s: 1. Thermal behavior and biodegradation of aliphatic–aromatic random copolymers. European Polymer Journal, 2008, 44, 3650-3661.	5.4	21
42	Dual chain extension effect and antibacterial properties of biomolecules interleaved within LDH dispersed into PBS by <i>in situ</i> polymerization. Dalton Transactions, 2018, 47, 3155-3165.	3.3	21
43	Toward a Better Understanding of the Fused Deposition Modeling Process: Comparison with Injection Molding. 3D Printing and Additive Manufacturing, 2018, 5, 319-327.	2.9	21
44	Organo-modified LDH fillers endowing multi-functionality to bio-based poly(butylene succinate): An extended study from the laboratory to possible market. Applied Clay Science, 2020, 188, 105502.	5.2	21
45	A rheological method for the study of crosslinking of ethylene acetate and ethylene acrylic ester copolymer in a polypropylene matrix. Polymer Engineering and Science, 1992, 32, 998-1003.	3.1	19
46	Effect of 3D Printing Temperature Profile on Polymer Materials Behavior. 3D Printing and Additive Manufacturing, 2020, 7, 311-325.	2.9	17
47	A comprehensive study of an unusual jammed nanocomposite structure using hybrid layered double hydroxide filler. Journal of Colloid and Interface Science, 2009, 332, 327-335.	9.4	16
48	Preparation of new biobased polyesters containing glycerol and their photodurability for outdoor applications. Green Chemistry, 2012, 14, 182-187.	9.0	16
49	Influence de la polydispersit� sur le comportement rh�ologique � l'�tat fondu du polypropyl�ne. Rheologica Acta, 1985, 24, 627-631.	2.4	15
50	Study of polypropylene peroxidation by ozonization using electron spin resonance and transmission electron microscopy. Polymer, 1992, 33, 2307-2311.	3.8	15
51	Correlations between relaxation time spectrum and melt spinning behavior of polypropylene. 1: Calculation of the relaxation spectrum as a log-normal distribution and influence of the molecular parameters. Polymer Engineering and Science, 1995, 35, 513-517.	3.1	15
52	About Durability of Biodegradable Polymers: Structure/Degradability Relationships. Macromolecular Symposia, 2010, 296, 378-387.	0.7	15
53	Inorganic-Organic Hybrid Materials Based on Amino Acid Modified Hydrotalcites Used as UV-Absorber Fillers for Polybutylene Succinate. European Journal of Inorganic Chemistry, 2012, 2012, 5252-5258.	2.0	15
54	Chain extender effect of 3-(4-hydroxyphenyl)propionic acid/layered double hydroxide in PBS bionanocomposites. European Polymer Journal, 2017, 94, 20-32.	5.4	15

#	Article	IF	CITATIONS
55	Wood polypropylene composites prepared by thermally modified fibers at two extrusion speeds: mechanical and viscoelastic properties. Holzforschung, 2015, 69, 313-319.	1.9	14
56	Enhancing the Thermostability of Engineered Laccases in Aqueous Betaine-Based Natural Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2022, 10, 572-581.	6.7	14
57	A new valorization route for Olive Mill wastewater: Improvement of durability of PP and PBS composites through multifunctional hybrid systems. Journal of Environmental Chemical Engineering, 2019, 7, 103026.	6.7	12
58	Molecular Evolution of Polymers through Photoageing: A New UV in situ Viscoelastic Technique. Macromolecular Rapid Communications, 2005, 26, 868-873.	3.9	11
59	Photodegradation of TiO2 composites based on polyesters. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 275-283.	3.9	11
60	Olive Mill Wastewater Valorization in Multifunctional Biopolymer Composites for Antibacterial Packaging Application. International Journal of Molecular Sciences, 2019, 20, 2376.	4.1	10
61	Outstanding chain-extension effect and high UV resistance of polybutylene succinate containing amino-acid-modified layered double hydroxides. Beilstein Journal of Nanotechnology, 2019, 10, 684-695.	2.8	10
62	Caractérisation des propriétés biochimiques et hygroscopiques d'une fibre de lin. Materiaux Et Techniques, 2012, 100, 525-535.	0.9	10
63	Determination of a discrete relaxation spectrum from dynamic experimental data using the Padé-Laplace method. European Polymer Journal, 1996, 32, 69-77.	5.4	9
64	Thermo-oxidation of polyterpenes: influence of the physical state. European Polymer Journal, 2000, 36, 2133-2142.	5.4	9
65	Tuning the hydrolytic degradation rate of poly-lactic acid (PLA) to more durable applications. AIP Conference Proceedings, 2017, , .	0.4	9
66	Composites for \hat{A} « white and green \hat{A} » solutions: Coupling UV resistance and chain extension effect from poly(butylene succinate) and layered double hydroxides composites. Journal of Solid State Chemistry, 2018, 268, 9-15.	2.9	9
67	Design, fabrication and anti-aging behavior of a multifunctional inorganic–organic hybrid stabilizer derived from co-intercalated layered double hydroxides for polypropylene. Inorganic Chemistry Frontiers, 2019, 6, 2539-2549.	6.0	9
68	Melt rheology as a powerful tool to follow chemical reactions in a polyolefin matrix. Makromolekulare Chemie Macromolecular Symposia, 1989, 25, 187-198.	0.6	8
69	Self-reinforcement of polymers as a consequence of elongational flow. Rheologica Acta, 2006, 45, 366-373.	2.4	8
70	Impact of the Atmosphere on the Reactivity of Peroxidic Species upon Photooxidation of Polymers. Macromolecular Rapid Communications, 2004, 25, 1236-1240.	3.9	7
71	Photo-oxidation of polymers: Validation of oxygen uptake and relationship with extent of hydroperoxidation. Journal of Applied Polymer Science, 2006, 99, 2238-2244.	2.6	7
72	Characterization of networks from photoreactive copolymers: an attempt to correlate chemical composition to network structure. Polymer International, 2010, 59, 1563-1570.	3.1	7

#	Article	IF	CITATIONS
73	Percolated non-Newtonian flow for silicone obtained from exfoliated bioinorganic layered double hydroxide intercalated with amino acid. Applied Clay Science, 2012, 55, 88-93.	5.2	7
74	Effect of bioâ€based monomers on the scratch resistance of acrylate photopolymerizable coatings. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 379-388.	2.1	7
75	Biowastes from wine as natural additive of polyolefins: Thermo―and photoâ€oxidation efficiency. Journal of Applied Polymer Science, 2018, 135, 46607.	2.6	7
76	Enhancement of Gas Barrier Properties and Durability of Poly(butylene succinate-co-butylene) Tj ETQq0 0 0 rgB1	Oyerlock	10 Tf 50 622
77	Photoaging of Polyoctenamer: Influence of the Initial Microstructure. International Journal of Polymer Analysis and Characterization, 2001, 6, 59-74.	1.9	6
78	Photodegradation of isotactic poly(1-butene): Multiscale characterization. Polymer Degradation and Stability, 2011, 96, 1740-1744.	5.8	6
79	Ageing of PCCD aliphatic polyesters: Effect of stereochemistry and ionic chain terminals. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 292, 42-48.	3.9	6
80	Melt Viscoelastic Assessment of Poly(Lactic Acid) Composting: Influence of UV Ageing. Molecules, 2018, 23, 2682.	3.8	6
81	Pozzolan Based 3D Printing Composites: From the Formulation Till the Final Application in the Precision Irrigation Field. Materials, 2021, 14, 43.	2.9	6
82	Influence of crosslinking on thermal shrinkage behaviour of poly(vinyl chloride) fibres. Polymer, 1994, 35, 3217-3220.	3.8	5
83	Influence of the dynamic rheological properties of polypropene on its calendering ability. Rheologica Acta, 1981, 20, 484-486.	2.4	4
84	Thermal decomposition kinetics of polypropylene peroxides in the polymer matrix followed by ESR. Makromolekulare Chemie Macromolecular Symposia, 1989, 25, 199-208.	0.6	4
85	Morphological Evolution of Polyoctenamer upon Photo-Ageing. Macromolecular Chemistry and Physics, 2003, 204, 76-82.	2.2	4
86	Physico-chemical durability criteria of oils and linked bio-based polymers. OCL - Oilseeds and Fats, Crops and Lipids, 2015, 22, D107.	1.4	4
87	Rheological aspects in degradation and stabilization of poly(vinyl chloride). Makromolekulare Chemie Macromolecular Symposia, 1989, 29, 209-226.	0.6	3
88	Synthesis of Advanced Nanoreinforced Polyurethane with Thiolene Photografted Organoâ€Modified Layered Double Hydroxide. European Journal of Inorganic Chemistry, 2015, 2015, 1203-1211.	2.0	3
89	Chain extender effect of 3-(4-hydroxyphenyl)propionic acid/layered double hydroxide in biopolyesters containing the succinate moiety. New Journal of Chemistry, 2020, 44, 10127-10136.	2.8	3
90	High-Density Bio-PE and Pozzolan Based Composites: Formulation and Prototype Design for Control of Low Water Flow. Polymers, 2021, 13, 1908.	4. 5	3

VINCENT VERNEY

#	ARTICLE	IF	CITATIONS
91	Styrene â€" Isoprene â€" Styrene Photoperoxidation: FT-IR, Calorimetric and Viscoelastic Study. International Journal of Polymer Analysis and Characterization, 2001, 6, 75-87.	1.9	2
92	A new ESR study of hindered amine stabilisers (HAS) and their oxidation products. Polymer International, 2003, 52, 576-580.	3.1	2
93	Effects of O ₃ and NO ₂ on the natural weathering of plasticized poly(vinyl) Tj ETQq1 10	0.784314 3.4	rgBT /Overlo
94	Influence of the viscoelastic regime onto the UV reactivity of poly(lactic acid). European Polymer Journal, 2019, 110, 138-144.	5.4	2
95	Calandrage du polypropà ne. Etude morphologique des défauts et prévision rhéologique. European Polymer Journal, 1984, 20, 773-778.	5.4	1
96	New polymers from renewable resources: synthesis, characterization, and photodurability of aliphatic polyesters containing glycerol. Journal of Biotechnology, 2010, 150, 206-206.	3.8	1
97	Morphological, Rheological and Mechanical Properties of Pla-Typha Based Biocomposites. Open Journal of Composite Materials, 2021, 11, 111-122.	0.8	1
98	A New Approach to the Evaluation of Stabilizer Efficiency Under Photo-Ageing. Macromolecular Materials and Engineering, 2004, 289, 387-392.	3.6	0
99	Ecomatériaux : les matériaux passent au vert. Materiaux Et Techniques, 2012, 100, 367-368.	0.9	O
100	Matériaux utilisés à des fins environnementales – le traitement des pollutions. Materiaux Et Techniques, 2012, 100, 189-190.	0.9	0