Kathy D Mccoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4263393/publications.pdf

Version: 2024-02-01

66343 11,923 72 42 citations h-index papers

g-index 75 75 75 16827 docs citations times ranked citing authors all docs

85541

71

#	Article	IF	CITATIONS
1	Crohnâ∈™s disease therapeutic dietary intervention (CD-TDI): study protocol for a randomised controlled trial. BMJ Open Gastroenterology, 2022, 9, e000841.	2.7	O
2	Dietary fiber combinations to mitigate the metabolic, microbial, and cognitive imbalances resulting from dietâ€induced obesity in rats. FASEB Journal, 2022, 36, e22269.	0.5	4
3	Method for absolute quantification of short chain fatty acids via reverse phase chromatography mass spectrometry. PLoS ONE, 2022, 17, e0267093.	2.5	16
4	Exercise and Prebiotic Fiber Provide Gut Microbiota-Driven Benefit in a Survivor to Germ-Free Mouse Translational Model of Breast Cancer. Cancers, 2022, 14, 2722.	3.7	7
5	Small intestinal resident eosinophils maintain gut homeostasis following microbial colonization. Immunity, 2022, 55, 1250-1267.e12.	14.3	29
6	Innate responses to gut microbiota; critical assessment of the necessary experimental controls. Current Opinion in Microbiology, 2021, 59, 34-41.	5.1	1
7	Distinct microbial communities colonize tonsillar squamous cell carcinoma. Oncolmmunology, 2021, 10, 1945202.	4.6	13
8	Lessons learned from the prenatal microbiome controversy. Microbiome, 2021, 9, 8.	11.1	67
9	Long-term evolution and short-term adaptation of microbiota strains and sub-strains in mice. Cell Host and Microbe, 2021, 29, 650-663.e9.	11.0	58
10	Impact of the microbiome on tumor immunity. Current Opinion in Immunology, 2021, 69, 39-46.	5. 5	9
11	Microbiota and Microglia Interactions in ASD. Frontiers in Immunology, 2021, 12, 676255.	4.8	31
12	Generation, maintenance, and monitoring of gnotobiotic mice. STAR Protocols, 2021, 2, 100536.	1.2	3
13	The development of aboriginal brain injury coordinator positions: a culturally secure rehabilitation service initiative as part of a clinical trial. Primary Health Care Research and Development, 2021, 22, e49.	1.2	5
14	Microbiota regulates intratumoral monocytes to promote anti-tumor immune responses. Cell, 2021, 184, 5301-5303.	28.9	7
15	Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nature Communications, 2020, 11, 4997.	12.8	109
16	Mucosal or systemic microbiota exposures shape the BÂcell repertoire. Nature, 2020, 584, 274-278.	27.8	132
17	Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science, 2020, 369, 1481-1489.	12.6	635
18	Programing of an Intravascular Immune Firewall by the Gut Microbiota Protects against Pathogen Dissemination during Infection. Cell Host and Microbe, 2020, 28, 660-668.e4.	11.0	64

#	Article	IF	Citations
19	Immunological roles of intestinal mesenchymal cells. Immunology, 2020, 160, 313-324.	4.4	16
20	MCL1 Is Required for Maintenance of Intestinal Homeostasis and Prevention of Carcinogenesis in Mice. Gastroenterology, 2020, 159, 183-199.	1.3	22
21	The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunology, 2020, 13, 574-583.	6.0	58
22	Perivascular localization of macrophages in the intestinal mucosa is regulated by Nr4a1 and the microbiome. Nature Communications, 2020, 11, 1329.	12.8	75
23	Maternal low-dose aspartame and stevia consumption with an obesogenic diet alters metabolism, gut microbiota and mesolimbic reward system in rat dams and their offspring. Gut, 2020, 69, 1807-1817.	12.1	55
24	Toll-Interacting Protein Regulates Immune Cell Infiltration and Promotes Colitis-Associated Cancer. IScience, 2020, 23, 100891.	4.1	9
25	Worm expulsion is independent of alterations in composition of the colonic bacteria that occur during experimental <i>Hymenolepis diminuta</i> i>infection in mice. Gut Microbes, 2020, 11, 497-510.	9.8	11
26	Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nature Communications, 2020, 11, 2577.	12.8	151
27	Not All Lymph Nodes Are Created Equal. Immunity, 2019, 51, 12-14.	14.3	2
28	Malt1 Protease Deficiency in Mice Disrupts Immune Homeostasis at Environmental Barriers and Drives Systemic T Cell–Mediated Autoimmunity. Journal of Immunology, 2019, 203, 2791-2806.	0.8	20
29	Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy. Science, 2019, 366, 881-886.	12.6	179
30	Maternal microbiota in pregnancy and early life. Science, 2019, 365, 984-985.	12.6	58
31	The microbiome and immune memory formation. Immunology and Cell Biology, 2019, 97, 625-635.	2.3	45
32	The IL-33/ST2 pathway shapes the regulatory T cell phenotype to promote intestinal cancer. Mucosal Immunology, 2019, 12, 990-1003.	6.0	107
33	Epithelial endoplasmic reticulum stress orchestrates a protective IgA response. Science, 2019, 363, 993-998.	12.6	51
34	Using Precisely Defined in vivo Microbiotas to Understand Microbial Regulation of lgE. Frontiers in Immunology, $2019,10,3107.$	4.8	25
35	Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions. Gut Microbes, 2018, 9, 1-8.	9.8	38
36	Defective immuno- and thymoproteasome assembly causes severe immunodeficiency. Scientific Reports, 2018, 8, 5975.	3.3	13

#	Article	IF	CITATIONS
37	Defining the Impact of Host Genotypes on Microbiota Composition Requires Meticulous Control of Experimental Variables. Immunity, 2018, 48, 605-607.	14.3	21
38	The Impact of Maternal Microbes and Microbial Colonization in Early Life on Hematopoiesis. Journal of Immunology, 2018, 200, 2519-2526.	0.8	21
39	The neonatal window of opportunity—early priming for life. Journal of Allergy and Clinical Immunology, 2018, 141, 1212-1214.	2.9	87
40	Sex-hormone-driven innate antibodies protect females and infants against EPEC infection. Nature Immunology, 2018, 19, 1100-1111.	14.5	58
41	Microbiota and Type 2 immune responses. Current Opinion in Immunology, 2018, 54, 20-27.	5.5	29
42	Human skin commensals augment Staphylococcus aureus pathogenesis. Nature Microbiology, 2018, 3, 881-890.	13.3	80
43	Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape. Immunity, 2017, 46, 532-548.	14.3	147
44	Gut Microbiome Standardization in Control and Experimental Mice. Current Protocols in Immunology, 2017, 117, 23.1.1-23.1.13.	3.6	66
45	T Follicular Helper Cells Promote a Beneficial Gut Ecosystem for Host Metabolic Homeostasis by Sensing Microbiota-Derived Extracellular ATP. Cell Reports, 2017, 18, 2566-2575.	6.4	87
46	A Gut Microbial Mimic that Hijacks Diabetogenic Autoreactivity to Suppress Colitis. Cell, 2017, 171, 655-667.e17.	28.9	106
47	High-Quality Whole-Genome Sequences of the Oligo-Mouse-Microbiota Bacterial Community. Genome Announcements, 2017, 5, .	0.8	49
48	Hostâ€microbiota interactions and adaptive immunity. Immunological Reviews, 2017, 279, 63-69.	6.0	63
49	Nlrp6- and ASC-Dependent Inflammasomes Do Not Shape the Commensal Gut Microbiota Composition. Immunity, 2017, 47, 339-348.e4.	14.3	141
50	Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nature Microbiology, 2017, 2, 16215.	13.3	313
51	The ESRP1-GPR137 axis contributes to intestinal pathogenesis. ELife, 2017, 6, .	6.0	24
52	Complete Genome Sequences of 12 Species of Stable Defined Moderately Diverse Mouse Microbiota 2. Genome Announcements, 2016, 4, .	0.8	45
53	Fibroblastic reticular cells regulate intestinal inflammation via IL-15-mediated control of group 1 ILCs. Nature Immunology, 2016, 17, 1388-1396.	14.5	72
54	The maternal microbiota drives early postnatal innate immune development. Science, 2016, 351, 1296-1302.	12.6	871

#	Article	IF	CITATIONS
55	The bilateral responsiveness between intestinal microbes and IgA. Trends in Immunology, 2015, 36, 460-470.	6.8	136
56	Deficiency of MALT1 Paracaspase Activity Results in Unbalanced Regulatory and Effector T and B Cell Responses Leading to Multiorgan Inflammation. Journal of Immunology, 2015, 194, 3723-3734.	0.8	123
57	The outer mucus layer hosts a distinct intestinal microbial niche. Nature Communications, 2015, 6, 8292.	12.8	390
58	Independence Day for IgA. Immunity, 2015, 43, 416-418.	14.3	13
59	IL-33 signaling contributes to the pathogenesis of myeloproliferative neoplasms. Journal of Clinical Investigation, 2015, 125, 2579-2591.	8.2	80
60	ATP-Gated Ionotropic P2X7 Receptor Controls Follicular T Helper Cell Numbers in Peyer's Patches to Promote Host-Microbiota Mutualism. Immunity, 2014, 41, 789-801.	14.3	152
61	Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nature Medicine, 2014, 20, 642-647.	30.7	480
62	Microbiota-Derived Compounds Drive Steady-State Granulopoiesis via MyD88/TICAM Signaling. Journal of Immunology, 2014, 193, 5273-5283.	0.8	202
63	Commensal bacteria protect against food allergen sensitization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13145-13150.	7.1	632
64	Segmented Filamentous Bacterium Uses Secondary and Tertiary Lymphoid Tissues to Induce Gut IgA and Specific T Helper 17 Cell Responses. Immunity, 2014, 40, 608-620.	14.3	280
65	Intestinal Microbial Diversity during Early-Life Colonization Shapes Long-Term IgE Levels. Cell Host and Microbe, 2013, 14, 559-570.	11.0	496
66	Sex Differences in the Gut Microbiome Drive Hormone-Dependent Regulation of Autoimmunity. Science, 2013, 339, 1084-1088.	12.6	1,565
67	Intestinal Bacterial Colonization Induces Mutualistic Regulatory T Cell Responses. Immunity, 2011, 34, 794-806.	14.3	749
68	Dysregulation of Allergic Airway Inflammation in the Absence of Microbial Colonization. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 198-205.	5.6	378
69	Reversible Microbial Colonization of Germ-Free Mice Reveals the Dynamics of IgA Immune Responses. Science, 2010, 328, 1705-1709.	12.6	657
70	Innate and Adaptive Immunity Cooperate Flexibly to Maintain Host-Microbiota Mutualism. Science, 2009, 325, 617-620.	12.6	443
71	Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Seminars in Immunology, 2007, 19, 59-69.	5.6	637
72	Natural IgE Production in the Absence of MHC Class II Cognate Help. Immunity, 2006, 24, 329-339.	14.3	103