Bozhou Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4262738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal studies of novel molecular perovskite energetic material (C6H14N2)[NH4(ClO4)3]. Chinese Chemical Letters, 2020, 31, 554-558.	9.0	54
2	A green high-initiation-power primary explosive: synthesis, 3D structure and energetic properties of dipotassium 3,4-bis(3-dinitromethylfurazan-4-oxy)furazan. RSC Advances, 2015, 5, 57833-57841.	3.6	52
3	New Strategy for Enhancing Energetic Properties by Regulating Trifuroxan Configuration: 3,4-Bis(3-nitrofuroxan-4-yl)furoxan. Scientific Reports, 2019, 9, 4321.	3.3	35
4	Exploring the highly dense energetic materials via regiochemical modulation: A comparative study of two fluorodinitromethyl-functionalized herringbone trifuroxans. Chemical Engineering Journal, 2020, 391, 123573.	12.7	28
5	Synthesis, structure and properties of neutral energetic materials based on N-functionalization of 3,6-dinitropyrazolo[4,3-c]pyrazole. RSC Advances, 2016, 6, 84760-84768.	3.6	25
6	High Energy Density Materials Incorporating 4,5â€Bis(dinitromethyl)â€Furoxanate and 4,5â€Bis(dinitromethyl)â€3â€Oxyâ€Furoxanate. ChemPlusChem, 2016, 81, 1156-1159.	2.8	23
7	Accelerating Molecular Design of Cage Energetic Materials with Zero Oxygen Balance through Large-Scale Database Search. Journal of Physical Chemistry Letters, 2021, 12, 11591-11597.	4.6	23
8	A New Synthetic Route for 3,3′-Bis(fluorodinitromethyl)difurazanyl Ether (FOF-13) and Its Energetic Properties. Journal of Energetic Materials, 2016, 34, 92-102.	2.0	22
9	Molecular-Shape-Dominated Crystal Packing Features of Energetic Materials. Crystal Growth and Design, 2021, 21, 1540-1547.	3.0	22
10	Research on the thermal behavior of novel heat resistance explosive 5,5′-bis(2,4,6-trinitrophenyl)-2,2′-bi(1,3,4-oxadiazole). Journal of Analytical and Applied Pyrolysis, 2018, 129, 189-194.	5.5	20
11	A good balance between the energy density and sensitivity from assembly of bis(dinitromethyl) and bis(fluorodinitromethyl) with a single furazan ring. Journal of Analytical and Applied Pyrolysis, 2018, 134, 218-230.	5.5	15
12	The Ingenious Synthesis of a Nitro-Free Insensitive High-Energy Material Featuring Face-to-Face and Edge-to-Face I€-Interactions. Frontiers in Chemistry, 2019, 7, 559.	3.6	15
13	Can N-oxidation alleviate the energy-safety contradiction of energetic materials?. FirePhysChem, 2021, 1, 27-32.	3.4	15
14	Accelerating the search of CHONF-containing highly energetic materials by combinatorial library design and high-throughput screening. Fuel, 2022, 310, 122241.	6.4	15
15	Transferring the available fused cyclic scaffolds for high—throughput combinatorial design of highly energetic materials via database mining. Fuel, 2022, 324, 124591.	6.4	14
16	Analysis of intermolecular interactions in homologous molecular crystals of energetic materials. Energetic Materials Frontiers, 2020, 1, 95-102.	3.2	12
17	Screening for energetic compounds based on 1,3-dinitrohexahydropyrimidine skeleton and 5-various explosopheres: molecular design and computational study. Scientific Reports, 2020, 10, 18292.	3.3	12
18	Highly Thermostable Insensitive Energetic Polynitrophenyl-Substituted Furazan (Furoxan)-Annelated Azepines. ACS Applied Energy Materials, 2020, 3, 7129-7137.	5.1	11

BOZHOU WANG

#	Article	IF	CITATIONS
19	Graphite-like Packing Modes Facilitating High Thermal Stability: A Comparative Study in the Polymorphs of Planar Energetic Molecules. Crystal Growth and Design, 2021, 21, 3175-3178.	3.0	11
20	Balancing good oxygen balance and high heat of formation by incorporating of -C(NO2)2F Moiety and Tetrazole into Furoxan block. Journal of Molecular Structure, 2020, 1222, 128934.	3.6	10
21	A promising insensitive energetic material based on a fluorodinitromethyl explosophore group and 1,2,3,4-tetrahydro-1,3,5-triazine: synthesis, crystal structure and performance. RSC Advances, 2020, 10, 11816-11822.	3.6	10
22	Synthetic Strategies Toward Nitrogen-Rich Energetic Compounds Via the Reaction Characteristics of Cyanofurazan/Furoxan. Frontiers in Chemistry, 2022, 10, 871684.	3.6	10
23	Synthetic and thermal studies of four insensitive energetic materials based on oxidation of the melamine structure. RSC Advances, 2021, 11, 288-295.	3.6	9
24	A combined experimental and theoretical study of the thermal decomposition mechanism and kinetics of ammonium dinitramide (ADN). New Journal of Chemistry, 2020, 44, 6833-6844.	2.8	9
25	Synthesis, Characterization and Performance of Promising Energetic Materials Based on 1,3â€Oxazinane. ChemPlusChem, 2019, 84, 913-918.	2.8	8
26	Effect of Fluoro Substituents on Polynitroarylenes: Design, Synthesis and Theoretical Studies of Fluorinated Nitrotoluenes. ChemPlusChem, 2019, 84, 92-97.	2.8	8
27	A promising TNT alternative 3,3′-bi(1,2,4-oxadiazole)-5,5′-diylbis(methylene)dinitrate (BOM): thermal behaviors and eutectic characteristics. RSC Advances, 2020, 10, 26425-26432.	3.6	8
28	Comparative thermal research on chlorodinitromethyl and fluorodinitromethyl explosophoric groups based insensitive energetic materials. FirePhysChem, 2021, 1, 54-60.	3.4	8
29	Synthesis and Characterization of 7 <i>H</i> -Trifurazano-[3,4- <i>b</i> :3',4'- <i>f</i> :3",4"- <i>d</i>]azepine and Its Analogues. Chinese Journal of Organic Chemistry, 2015, 35, 851.	1.3	8
30	An Efficient Method of Preparation and Comprehensive Properties for Energetic Salts Based on Nitrofurazanâ€Functionalized Hydroxytetrazoles. ChemistrySelect, 2018, 3, 11835-11841.	1.5	7
31	3,4-Bis(3-tetrazolylfuroxan-4-yl)furoxan: A Linear C–C Bonded Pentaheterocyclic Energetic Material with High Heat of Formation and Superior Performance. ACS Omega, 2020, 5, 11115-11122.	3.5	7
32	<scp>Intraâ€Ring</scp> Bridging: A Strategy for Molecular Design of Highly Energetic Nitramines. Chinese Journal of Chemistry, 2021, 39, 2857-2864.	4.9	6
33	A comparative study of the structures, thermal stabilities and energetic performances of two energetic regioisomers: 3(4)-(4-aminofurazan-3-yl)-4(3)-(4-nitrofurazan-3-yl)furoxan. RSC Advances, 2020, 10, 31800-31807.	3.6	4
34	Multi-Level Structural Design Strategy toward Low-Sensitivity Energetic Materials: From Planar Molecule to Layered Packing Crystal. Crystal Growth and Design, 2022, 22, 1882-1891.	3.0	4
35	Synthesis and properties of azamonocyclic energetic materials with geminal explosophores. Dalton Transactions, 2021, 50, 8338-8348.	3.3	3
36	Methyl nitrate energetic compounds based on bicyclic scaffolds of furazan–isofurazan (isoxazole): syntheses, crystal structures and detonation performances. RSC Advances, 2022, 12, 7712-7719.	3.6	3

#	Article	IF	CITATIONS
37	Comparative Research on Promising Energetic 1,3-Diazinane and 1,3-Oxazinane Structures. Arabian Journal of Chemistry, 2022, , 103947.	4.9	0