Cheryl Hemingway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4262662/publications.pdf

Version: 2024-02-01

62 papers

3,361 citations

236612 25 h-index 56 g-index

62 all docs

62 docs citations

times ranked

62

3655 citing authors

#	Article	IF	CITATIONS
1	Clinical presentation and prognosis in MOG-antibody disease: a UK study. Brain, 2017, 140, 3128-3138.	3.7	527
2	Neurologic and Radiographic Findings Associated With COVID-19 Infection in Children. JAMA Neurology, 2020, 77, 1440.	4.5	314
3	Utility and safety of rituximab in pediatric autoimmune and inflammatory CNS disease. Neurology, 2014, 83, 142-150.	1.5	275
4	Paediatric autoimmune encephalopathies: clinical features, laboratory investigations and outcomes in patients with or without antibodies to known central nervous system autoantigens. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 748-755.	0.9	217
5	Myelin oligodendrocyte glycoprotein antibodies are associated with a non-MS course in children. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e81.	3.1	205
6	Diagnostic algorithm for relapsing acquired demyelinating syndromes in children. Neurology, 2017, 89, 269-278.	1.5	155
7	Paediatric acquired demyelinating syndromes: incidence, clinical and magnetic resonance imaging features. Multiple Sclerosis Journal, 2013, 19, 76-86.	1.4	116
8	Treatment of MOG-IgG-associated disorder with rituximab: An international study of 121 patients. Multiple Sclerosis and Related Disorders, 2020, 44, 102251.	0.9	110
9	Myelin oligodendrocyte glycoprotein and aquaporinâ€4 antibodies are highly specific in children with acquired demyelinating syndromes. Developmental Medicine and Child Neurology, 2018, 60, 958-962.	1.1	105
10	Paediatric neuromyelitis optica: clinical, MRI of the brain and prognostic features: TableÂ1. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 470-472.	0.9	90
11	E.U. paediatric MOG consortium consensus: Part 1 – Classification of clinical phenotypes of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. European Journal of Paediatric Neurology, 2020, 29, 2-13.	0.7	87
12	NMDA receptor antibodies associated with distinct white matter syndromes. Neurology: Neuroimmunology and NeuroInflammation, 2014, 1, e2.	3.1	85
13	â€~Leukodystrophyâ€like' phenotype in children with myelin oligodendrocyte glycoprotein antibodyâ€associated disease. Developmental Medicine and Child Neurology, 2018, 60, 417-423.	1.1	81
14	Autoantibody biomarkers in childhood-acquired demyelinating syndromes: results from a national surveillance cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 456-461.	0.9	70
15	E.U. paediatric MOG consortium consensus: Part 5 – Treatment of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. European Journal of Paediatric Neurology, 2020, 29, 41-53.	0.7	59
16	Clinical relevance of voltage-gated potassium channel–complex antibodies in children. Neurology, 2015, 85, 967-975.	1.5	57
17	Acute idiopathic transverse myelitis in children. Neurology, 2015, 84, 341-349.	1.5	56
18	Delineation of the movement disorders associated with <i>FOXG1</i> mutations. Neurology, 2016, 86, 1794-1800.	1.5	55

#	Article	IF	Citations
19	Factors Associated With Relapse and Treatment of Myelin Oligodendrocyte Glycoprotein Antibody–Associated Disease in the United Kingdom. JAMA Network Open, 2022, 5, e2142780.	2.8	46
20	Retinal nerve fibre layer thinning is associated with worse visual outcome after optic neuritis in children with a relapsing demyelinating syndrome. Developmental Medicine and Child Neurology, 2018, 60, 1244-1250.	1.1	38
21	Early predictors of epilepsy and subsequent relapse in children with acute disseminated encephalomyelitis. Multiple Sclerosis Journal, 2020, 26, 333-342.	1.4	37
22	Treatment and outcome of aquaporin-4 antibody–positive NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	37
23	Understanding fatigue in paediatric multiple sclerosis: a systematic review of clinical and psychosocial factors. Developmental Medicine and Child Neurology, 2016, 58, 229-239.	1.1	36
24	Neuromyelitis optica relapses: Race and rate, immunosuppression and impairment. Multiple Sclerosis and Related Disorders, 2016, 7, 21-25.	0.9	36
25	E.U. paediatric MOG consortium consensus: Part 2 – Neuroimaging features of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. European Journal of Paediatric Neurology, 2020, 29, 14-21.	0.7	32
26	Paediatric multiple sclerosis: a new era in diagnosis and treatment. Developmental Medicine and Child Neurology, 2019, 61, 1039-1049.	1.1	30
27	Real-life survey of pitfalls and successes of precision medicine in genetic epilepsies. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1044-1052.	0.9	30
28	E.U. paediatric MOG consortium consensus: Part 4 – Outcome of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. European Journal of Paediatric Neurology, 2020, 29, 32-40.	0.7	29
29	Improved performance of the 2017 McDonald criteria for diagnosis of multiple sclerosis in children in a real-life cohort. Multiple Sclerosis Journal, 2020, 26, 1372-1380.	1.4	28
30	Differential diagnosis and evaluation in pediatric inflammatory demyelinating disorders. Neurology, 2016, 87, S28-37.	1.5	26
31	Diagnosis and Management of Opsoclonus-Myoclonus-Ataxia Syndrome in Children. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	26
32	Therapeutic plasma exchange in paediatric neurology: a critical review and proposed treatment algorithm. Developmental Medicine and Child Neurology, 2018, 60, 765-779.	1.1	24
33	E.U. paediatric MOG consortium consensus: Part 3 – Biomarkers of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. European Journal of Paediatric Neurology, 2020, 29, 22-31.	0.7	24
34	"It feels like wearing a giant sandbag.―Adolescent and parent perceptions of fatigue in paediatric multiple sclerosis. European Journal of Paediatric Neurology, 2016, 20, 938-945.	0.7	23
35	Use of Disease-Modifying Therapies in Pediatric Relapsing-Remitting Multiple Sclerosis in the United Kingdom. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	16
36	Early predictors of disability of paediatric-onset AQP4-lgG-seropositive neuromyelitis optica spectrum disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 101-111.	0.9	16

#	Article	IF	CITATIONS
37	Is chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) in children the same condition as in adults?. Developmental Medicine and Child Neurology, 2019, 61, 490-496.	1.1	15
38	Progressive neurologic disorder: Initial manifestation of hemophagocytic lymphohistiocytosis. Neurology, 2016, 86, 2109-2111.	1.5	14
39	Neutrophil-to-lymphocyte ratio correlates with disease activity in myelin oligodendrocyte glycoprotein antibody associated disease (MOGAD) in children. Multiple Sclerosis and Related Disorders, 2020, 45, 102345.	0.9	13
40	Adolescent and parent factors related to fatigue in paediatric multiple sclerosis and chronic fatigue syndrome: A comparative study. European Journal of Paediatric Neurology, 2019, 23, 70-80.	0.7	12
41	MRI Patterns in Pediatric CNS Hemophagocytic Lymphohistiocytosis. American Journal of Neuroradiology, 2021, 42, 2077-2085.	1.2	11
42	Endocrinopathies in paediatric-onset neuromyelitis optica spectrum disorder with aquaporin 4 (AQP4) antibody. Multiple Sclerosis Journal, 2018, 24, 679-684.	1.4	9
43	Cerebral vasculopathy in childhood neurofibromatosis type 2: cause for concern?. Developmental Medicine and Child Neurology, 2018, 60, 1285-1288.	1.1	9
44	Utility and safety of plasma exchange in paediatric neuroimmune disorders. Developmental Medicine and Child Neurology, 2019, 61, 540-546.	1.1	8
45	Exploring steroid tapering in patients with neuromyelitis optica spectrum disorder treated with satralizumab in SAkuraSky: A case series. Multiple Sclerosis and Related Disorders, 2022, 61, 103772.	0.9	8
46	Clinical features, investigations, and outcomes of pediatric limbic encephalitis: A multicenter study. Annals of Clinical and Translational Neurology, 2022, 9, 67-78.	1.7	7
47	Abnormal white matter development in children with multiple sclerosis and monophasic acquired demyelination. Brain, 2017, 140, 1172-1174.	3.7	6
48	Spectrum of Neuroradiologic Findings Associated with Monogenic Interferonopathies. American Journal of Neuroradiology, 2022, 43, 2-10.	1.2	6
49	Diagnostic algorithm for children presenting with epilepsia partialis continua. Epilepsia, 2020, 61, 2224-2233.	2.6	5
50	Primary progressive multiple sclerosis presenting under the age of 18 years: Fact or fiction?. Multiple Sclerosis Journal, 2021, 27, 309-314.	1.4	5
51	Current international trends in the treatment of multiple sclerosis in childrenâ€"Impact of the COVID-19 pandemic. Multiple Sclerosis and Related Disorders, 2021, 56, 103277.	0.9	5
52	Isolated central nervous system familial hemophagocytic lymphohistiocytosis (fHLH) presenting as a mimic of demyelination in children. Multiple Sclerosis Journal, 2022, 28, 669-675.	1.4	5
53	A case of seropositive Neuromyelitis Optica in a paediatric patient with co-existing acute nephrotic syndrome. Multiple Sclerosis and Related Disorders, 2017, 18, 103-105.	0.9	4
54	A new family with GLRB-related hyperekplexia showing chorea in homo- and heterozygous variant carriers. Parkinsonism and Related Disorders, 2020, 79, 97-99.	1.1	4

#	Article	IF	CITATIONS
55	Progress in the Management of Paediatric-Onset Multiple Sclerosis. Children, 2020, 7, 222.	0.6	4
56	Incidence of paediatric multiple sclerosis and other acquired demyelinating syndromes: 10â€ y ear followâ€up surveillance study. Developmental Medicine and Child Neurology, 2022, 64, 502-508.	1.1	4
57	Psychosocial impact of paediatric demyelinating disorders: a scoping review. Developmental Medicine and Child Neurology, 2020, 62, 1250-1258.	1.1	3
58	OPTIMISE: MS study protocol: a pragmatic, prospective observational study to address the need for, and challenges with, real world pharmacovigilance in multiple sclerosis. BMJ Open, 2021, 11, e050176.	0.8	3
59	Diagnosis and management of multiple sclerosis and other relapsing demyelinating disease in childhood. Archives of Disease in Childhood, 2022, 107, 216-222.	1.0	2
60	Treatment Strategies for Central Nervous System Effects in Primary and Secondary Haemophagocytic Lymphohistiocytosis in Children. Current Treatment Options in Neurology, 2022, 24, 55-76.	0.7	1
61	085†Ten year follow-up surveillance of paediatric acquired demyelinating syndromes (ADS) in the UK. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A127.1-A127.	0.9	O
62	143†Is it â€~CLIPPERS'? Is it CNS Hemophagocytic Lymphohistiocytosis (HLH)?. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A146.1-A146.	0.9	0