Mahmoud Y Issa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4262655/publications.pdf

Version: 2024-02-01

45 papers 1,431 citations

³⁹⁴²⁸⁶ 19 h-index 36 g-index

45 all docs

45 docs citations

45 times ranked

3626 citing authors

#	Article	IF	CITATIONS
1	Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders. Science, 2014, 343, 506-511.	6.0	466
2	Loss of tubulin deglutamylase <scp>CCP</scp> 1 causes infantileâ€onset neurodegeneration. EMBO Journal, 2018, 37, .	3.5	86
3	Pathogenic Variants in PIGG Cause Intellectual Disability with Seizures and Hypotonia. American Journal of Human Genetics, 2016, 98, 615-626.	2.6	71
4	Biallelic Variants in OTUD6B Cause an Intellectual Disability Syndrome Associated with Seizures and Dysmorphic Features. American Journal of Human Genetics, 2017, 100, 676-688.	2.6	54
5	Bi-allelic GOT2 Mutations Cause a Treatable Malate-Aspartate Shuttle-Related Encephalopathy. American Journal of Human Genetics, 2019, 105, 534-548.	2.6	46
6	Novel congenital disorder of <i>O</i> -linked glycosylation caused by GALNT2 loss of function. Brain, 2020, 143, 1114-1126.	3.7	46
7	Hypomorphic Recessive Variants in SUFU Impair the Sonic Hedgehog Pathway and Cause Joubert Syndrome with Cranio-facial and Skeletal Defects. American Journal of Human Genetics, 2017, 101, 552-563.	2.6	45
8	Homozygous Mutations in TBC1D23 Lead to a Non-degenerative Form of Pontocerebellar Hypoplasia. American Journal of Human Genetics, 2017, 101, 441-450.	2.6	43
9	Genetic variants in components of the NALCN–UNC80–UNC79 ion channel complex cause a broad clinical phenotype (NALCN channelopathies). Human Genetics, 2018, 137, 753-768.	1.8	38
10	A homozygous founder mutation in <i>TRAPPC6B</i> associates with a neurodevelopmental disorder characterised by microcephaly, epilepsy and autistic features. Journal of Medical Genetics, 2018, 55, 48-54.	1.5	37
11	<i>PYCR2</i> Mutations cause a lethal syndrome of microcephaly and failure to thrive. Annals of Neurology, 2016, 80, 59-70.	2.8	35
12	Molybdenum cofactor and isolated sulphite oxidase deficiencies: Clinical and molecular spectrum among Egyptian patients. European Journal of Paediatric Neurology, 2016, 20, 714-722.	0.7	33
13	Germline and Mosaic Variants in PRKACA and PRKACB Cause a Multiple Congenital Malformation Syndrome. American Journal of Human Genetics, 2020, 107, 977-988.	2.6	33
14	Mutations in Spliceosomal Genes PPIL1 and PRP17 Cause Neurodegenerative Pontocerebellar Hypoplasia with Microcephaly. Neuron, 2021, 109, 241-256.e9.	3.8	31
15	Expanding the phenotypic and mutational spectrum in microcephalic osteodysplastic primordial dwarfism type I. American Journal of Medical Genetics, Part A, 2012, 158A, 1455-1461.	0.7	30
16	Hypermanganesemia with dystonia, polycythemia and cirrhosis in 10 patients: Six novel <i>SLC30A10</i> mutations and further phenotype delineation. Clinical Genetics, 2018, 93, 905-912.	1.0	30
17	Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy. Nature Communications, 2019, 10, 707.	5.8	28
18	Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder. Nature Communications, 2021, 12, 2558.	5.8	28

#	Article	IF	CITATIONS
19	Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy. Nature Communications, 2019, 10, 797.	5.8	24
20	Further delineation of the clinical spectrum in <i>RNU4ATAC</i> related microcephalic osteodysplastic primordial dwarfism type I. American Journal of Medical Genetics, Part A, 2013, 161, 1875-1881.	0.7	20
21	<i><scp>PGAP3</scp></i> â€related hyperphosphatasia with mental retardation syndrome: Report of 10 new patients and a homozygous founder mutation. Clinical Genetics, 2018, 93, 84-91.	1.0	20
22	Loss of <i>Protocadherinâ€12</i> <scp>L</scp> eads to <scp>D</scp> iencephalicâ€ <scp>M</scp> esencephalic <scp>J</scp> unction <scp>D</scp> ysplasia <scp>S</scp> yndrome. Annals of Neurology, 2018, 84, 638-647.	2.8	19
23	Band-like calcification with simplified gyration and polymicrogyria: report of 10 new families and identification of five novel OCLN mutations. Journal of Human Genetics, 2017, 62, 553-559.	1.1	18
24	The potential impact of COMT gene variants on dopamine regulation and phenotypic traits of ASD patients. Behavioural Brain Research, 2020, 378, 112272.	1.2	15
25	Biallelic variants in <i>ADARB1</i> , encoding a dsRNA-specific adenosine deaminase, cause a severe developmental and epileptic encephalopathy. Journal of Medical Genetics, 2021, 58, 495-504.	1.5	14
26	Exome sequencing discloses KALRN homozygous variant as likely cause of intellectual disability and short stature in a consanguineous pedigree. Human Genomics, 2016, 10, 26.	1.4	13
27	Implication of folate deficiency in CYP2U1 loss of function. Journal of Experimental Medicine, 2021, 218, .	4.2	13
28	Micro and Martsolf syndromes in 34 new patients: Refining the phenotypic spectrum and further molecular insights. Clinical Genetics, 2020, 98, 445-456.	1.0	12
29	Microcephalic osteodysplastic primordial dwarfism type II: Additional nine patients with implications on phenotype and genotype correlation. American Journal of Medical Genetics, Part A, 2020, 182, 1407-1420.	0.7	11
30	Prenatal delineation of a distinct lethal fetal syndrome caused by a homozygous truncating <scp><i>KIDINS220</i></scp> variant. American Journal of Medical Genetics, Part A, 2020, 182, 2867-2876.	0.7	10
31	Clinicoâ€radiological features, molecular spectrum, and identification of prognostic factors in developmental and epileptic encephalopathy due to inosine triphosphate pyrophosphatase (ITPase) deficiency. Human Mutation, 2022, 43, 403-419.	1.1	9
32	Phenotypic and mutational spectrum of thirty-five patients with Sjögren–Larsson syndrome: identification of eleven novel ALDH3A2 mutations and founder effects. Journal of Human Genetics, 2019, 64, 859-865.	1,1	8
33	GAPO syndrome in seven new patients: Identification of five novel <i>ANTXR1</i> mutations including the first large intragenic deletion. American Journal of Medical Genetics, Part A, 2019, 179, 237-242.	0.7	8
34	A relatively common homozygous TRAPPC4 splicing variant is associated with an early-infantile neurodegenerative syndrome. European Journal of Human Genetics, 2021, 29, 271-279.	1.4	8
35	Profound microcephaly, primordial dwarfism with developmental brain malformations: A new syndrome. American Journal of Medical Genetics, Part A, 2012, 158A, 1823-1831.	0.7	6
36	New recessive syndrome of microcephaly, cerebellar hypoplasia, and congenital heart conduction defect. American Journal of Medical Genetics, Part A, 2011, 155, 3035-3041.	0.7	4

#	Article	IF	CITATIONS
37	Blepharophimosisâ€ptosisâ€intellectual disability syndrome: A report of nine Egyptian patients with further expansion of phenotypic and mutational spectrum. American Journal of Medical Genetics, Part A, 2020, 182, 2857-2866.	0.7	4
38	Molecular diagnosis in recessive pediatric neurogenetic disease can help reduce disease recurrence in families. BMC Medical Genomics, 2020, 13, 68.	0.7	4
39	A novel frameshift mutation in the sterol 27-hydroxylase gene in an Egyptian family with cerebrotendinous xanthomatosis without cataract. Metabolic Brain Disease, 2017, 32, 311-315.	1.4	3
40	<scp><i>ASAH1</i></scp> â€related disorders: Description of 15 novel pediatric patients and expansion of the clinical phenotype. Clinical Genetics, 2020, 98, 598-605.	1.0	3
41	Prenatal presentation of Walker–Warburg syndrome with a POMT2 mutation: an extended fetal phenotype. Egyptian Journal of Medical Human Genetics, 2020, 21, .	0.5	2
42	Unbalanced 14;X Translocation and Pattern of X Inactivation in a Female Patient with Multiple Congenital Anomalies. Cytogenetic and Genome Research, 2018, 156, 71-79.	0.6	1
43	Mutation spectrum in the gene encoding methyl-CpG-binding protein 2 in Egyptian patients with Rett syndrome. Meta Gene, 2020, 24, 100620.	0.3	1
44	A founder mutation in PEX12 among Egyptian patients in peroxisomal biogenesis disorder. Neurological Sciences, 2020, 42, 2737-2745.	0.9	1
45	Variable predicted pathogenic mechanisms for novel MECP2 variants in RTT patients. Journal of Genetic Engineering and Biotechnology, 2022, 20, 44.	1.5	O