Sang Jin Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4262626/publications.pdf Version: 2024-02-01

SANC UN LEE

#	Article	IF	CITATIONS
1	Bioink Printability Methodologies for Cell-Based Extrusion Bioprinting. , 2022, , 153-183.		2
2	Treatment of gouty arthritis is associated with restoring the gut microbiota and promoting the production of short-chain fatty acids. Arthritis Research and Therapy, 2022, 24, 51.	1.6	11
3	Stem cell-laden hydrogel bioink for generation of high resolution and fidelity engineered tissues with complex geometries. Bioactive Materials, 2022, 15, 185-193.	8.6	17
4	Release Kinetics and In Vitro Characterization of Sodium Percarbonate and Calcium Peroxide to Oxygenate Bioprinted Tissue Models. International Journal of Molecular Sciences, 2022, 23, 6842.	1.8	7
5	Comparison Study of Stem Cell-Derived Extracellular Vesicles for Enhanced Osteogenic Differentiation. Tissue Engineering - Part A, 2021, 27, 1044-1054.	1.6	14
6	Self-Assembling Peptide Solution Accelerates Hemostasis. Advances in Wound Care, 2021, 10, 191-203.	2.6	9
7	Automated Image Analysis Methodologies to Compute Bioink Printability. Advanced Engineering Materials, 2021, 23, 2000900.	1.6	7
8	A photo-crosslinkable cartilage-derived extracellular matrix bioink for auricular cartilage tissue engineering. Acta Biomaterialia, 2021, 121, 193-203.	4.1	81
9	Evaluation of an In Vivo Rat Carotid Artery Interposition Study to Assess Functionalized Tissue Engineered Vascular Scaffolds. Journal of Vascular Surgery, 2021, 73, e29-e30.	0.6	0
10	Grading and localization of histological features for bioengineered kidney constructs. , 2021, , .		0
11	Nonâ€invasive in vivo monitoring of transplanted stem cells in <scp>3D</scp> â€bioprinted constructs using nearâ€infrared fluorescent imaging. Bioengineering and Translational Medicine, 2021, 6, e10216.	3.9	9
12	Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting. Biofabrication, 2021, 13, 034103.	3.7	50
13	Self-aligned myofibers in 3D bioprinted extracellular matrix-based construct accelerate skeletal muscle function restoration. Applied Physics Reviews, 2021, 8, 021405.	5.5	33
14	Association of retroperitoneal fibrosis with malignancy and its outcomes. Arthritis Research and Therapy, 2021, 23, 249.	1.6	5
15	PD45-02 A BIOFUNCTIONAL ELECTROSPUN VASCULAR SCAFFOLD FOR REPLACING RENAL VESSELS. Journal of Urology, 2021, 206, .	0.2	0
16	Response to Letter to Editor "Comment on â€~A photo-crosslinkable cartilage-derived extracellular matrix bioink for auricular cartilage tissue engineering' by Visscher et al.― Acta Biomaterialia, 2021, 135, 724.	4.1	2
17	Reappraisal of bone scintigraphy as a new tool for the evaluation of disease activity in patients with rheumatoid arthritis. Scientific Reports, 2021, 11, 21809.	1.6	1
18	A 3Dâ€printed polycaprolactone/βâ€ŧricalcium phosphate mandibular prosthesis: A pilot animal study. Laryngoscope, 2020, 130, 358-366.	1.1	15

#	Article	IF	CITATIONS
19	A novel decellularized skeletal muscle-derived ECM scaffolding system for in situ muscle regeneration. Methods, 2020, 171, 77-85.	1.9	39
20	3-D bioprinting technologies for tissue engineering applications. , 2020, , 269-288.		7
21	Bioprinted trachea constructs with patient-matched design, mechanical and biological properties. Biofabrication, 2020, 12, 015022.	3.7	34
22	The effect of 3D printing on the morphological and mechanical properties of polycaprolactone filament and scaffold. Polymers for Advanced Technologies, 2020, 31, 1038-1046.	1.6	28
23	Bioprinted Skin Recapitulates Normal Collagen Remodeling in Full-Thickness Wounds. Tissue Engineering - Part A, 2020, 26, 512-526.	1.6	79
24	Efficient myotube formation in 3D bioprinted tissue construct by biochemical and topographical cues. Biomaterials, 2020, 230, 119632.	5.7	120
25	Decellularized Skin Extracellular Matrix (dsECM) Improves the Physical and Biological Properties of Fibrinogen Hydrogel for Skin Bioprinting Applications. Nanomaterials, 2020, 10, 1484.	1.9	41
26	NIR fluorescence for monitoring in vivo scaffold degradation along with stem cell tracking in bone tissue engineering. Biomaterials, 2020, 258, 120267.	5.7	40
27	3D Printing and NIR Fluorescence Imaging Techniques for the Fabrication of Implants. Materials, 2020, 13, 4819.	1.3	6
28	3D Bioprinted Highly Elastic Hybrid Constructs for Advanced Fibrocartilaginous Tissue Regeneration. Chemistry of Materials, 2020, 32, 8733-8746.	3.2	40
29	The Influence of Printing Parameters and Cell Density on Bioink Printing Outcomes. Tissue Engineering - Part A, 2020, 26, 1349-1358.	1.6	36
30	Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks. Chemical Reviews, 2020, 120, 10834-10886.	23.0	107
31	The effect of BMP-mimetic peptide tethering bioinks on the differentiation of dental pulp stem cells (DPSCs) in 3D bioprinted dental constructs. Biofabrication, 2020, 12, 035029.	3.7	49
32	Antibody-Conjugated Electrospun Vascular Scaffolds to Enhance <i>In Situ</i> Endothelialization. ACS Applied Bio Materials, 2020, 3, 4486-4494.	2.3	8
33	The Role of the Microenvironment in Controlling the Fate of Bioprinted Stem Cells. Chemical Reviews, 2020, 120, 11056-11092.	23.0	37
34	Transplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytes. Scientific Reports, 2020, 10, 4326.	1.6	49
35	Reno-protection of Urine-derived Stem Cells in A Chronic Kidney Disease Rat Model Induced by Renal Ischemia and Nephrotoxicity. International Journal of Biological Sciences, 2020, 16, 435-446.	2.6	26
36	Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nature Communications, 2020, 11, 1025.	5.8	130

Sang Jin Lee

#	Article	IF	CITATIONS
37	Assessment methodologies for extrusion-based bioink printability. Biofabrication, 2020, 12, 022003.	3.7	214
38	Three-dimensional bioprinting for tissue engineering. , 2020, , 1391-1415.		10
39	Prediction of mechanical behavior of 3D bioprinted tissue-engineered scaffolds using finite element method (FEM) analysis. Additive Manufacturing, 2020, 33, 101181.	1.7	24
40	MP52-08 3D BIOPRINTED RENAL TISSUE CONSTRUCTS USING A NOVEL KIDNEY ECM-DERIVED BIOINK. Journal of Urology, 2020, 203, .	0.2	3
41	Olfactory and Gustatory Dysfunction in a COVID-19 Patient with Ankylosing Spondylitis Treated with Etanercept: Case Report. Journal of Korean Medical Science, 2020, 35, e201.	1.1	20
42	MP29-17 A DECELLULARIZED SKELETAL MUSCLE-DERIVED ECM FOR IN SITU MUSCLE REGENERATION. Journal of Urology, 2020, 203, e435.	0.2	0
43	Three-Dimensional Tissue and Organ Printing in Regenerative Medicine. , 2019, , 831-852.		10
44	Effect of Hierarchical Scaffold Consisting of Aligned dECM Nanofibers and Poly(lactide- <i>co</i> -glycolide) Struts on the Orientation and Maturation of Human Muscle Progenitor Cells. ACS Applied Materials & Interfaces, 2019, 11, 39449-39458.	4.0	46
45	Development of a Multifunctionalized Vascular Scaffolding System to Induce In Situ Endothelialization. Journal of Vascular Surgery, 2019, 69, e6-e7.	0.6	0
46	<i>In vitro</i> evaluation of functionalized decellularized muscle scaffold for <i>in situ</i> skeletal muscle regeneration. Biomedical Materials (Bristol), 2019, 14, 045015.	1.7	16
47	Effect of Human Amniotic Fluid Stem Cells on Kidney Function in a Model of Chronic Kidney Disease. Tissue Engineering - Part A, 2019, 25, 1493-1503.	1.6	12
48	A Photo rosslinkable Kidney ECMâ€Đerived Bioink Accelerates Renal Tissue Formation. Advanced Healthcare Materials, 2019, 8, e1800992.	3.9	162
49	Biofunctional Vascular Scaffold for Replacing Small-Diameter Blood Vessels. Journal of the American College of Surgeons, 2019, 229, e213-e214.	0.2	0
50	Fabrication and characterization of 3 <scp>D</scp> â€printed elastic auricular scaffolds: A pilot study. Laryngoscope, 2019, 129, 351-357.	1.1	14
51	PD09-02 IMPLANTATION OF URINE-DERIVED STEM CELL FOR CHRONIC KIDNEY DISEASE INDUCED BY NEPHROTOXIC DRUG IN A RAT MODEL WITH RENAL ISCHEMIA. Journal of Urology, 2019, 201, .	0.2	0
52	A Case of Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging of Eosinophilic Granulomatosis With Polyangiitis Combined With Non-tuberculous Mycobacterium. European Journal of Case Reports in Internal Medicine, 2019, 6, 001299.	0.2	0
53	Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nature Communications, 2018, 9, 1620.	5.8	520
54	3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomaterialia, 2018, 70, 48-56.	4.1	227

#	Article	IF	CITATIONS
55	In Situ Tissue Regeneration of Renal Tissue Induced by Collagen Hydrogel Injection. Stem Cells Translational Medicine, 2018, 7, 241-250.	1.6	26
56	Biofabrication strategies for 3D in vitro models and regenerative medicine. Nature Reviews Materials, 2018, 3, 21-37.	23.3	502
57	Biomaterials and Tissue Engineering. , 2018, , 17-51.		28
58	Three-dimensional bioprinting for organ bioengineering: promise and pitfalls. Current Opinion in Organ Transplantation, 2018, 23, 649-656.	0.8	11
59	Bone and Cartilage Tissue Engineering. , 2018, , 345-345.		0
60	PD33-12 IN VIVO EVALUATION OF FUNCTIONALIZED MUSCLE SCAFFOLDS FOR RECONSTRUCTION. Journal of Urology, 2018, 199, .	0.2	0
61	3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function Restoration. Scientific Reports, 2018, 8, 12307.	1.6	166
62	MP61-03 A BIOFUNCTIONAL VASCULAR SCAFFOLD FOR REPLACING SMALL-DIAMETER BLOOD VESSELS. Journal of Urology, 2018, 199, .	0.2	0
63	3D bioprinted biomask for facial skin reconstruction. Bioprinting, 2018, 10, e00028.	2.9	56
64	Optimization of gelatin–alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication, 2018, 10, 034106.	3.7	336
65	Electrospun vascular scaffold for cellularized small diameter blood vessels: A preclinical large animal study. Acta Biomaterialia, 2017, 59, 58-67.	4.1	91
66	In vitro skin expansion: Wound healing assessment. Wound Repair and Regeneration, 2017, 25, 398-407.	1.5	5
67	Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Scientific Reports, 2017, 7, 8837.	1.6	407
68	Clinically Relevant Bioprinting Workflow and Imaging Process for Tissue Construct Design and Validation. 3D Printing and Additive Manufacturing, 2017, 4, 239-247.	1.4	21
69	Fabrication and characterization of 3D-printed bone-like Î ² -tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering. Journal of Industrial and Engineering Chemistry, 2017, 46, 175-181.	2.9	83
70	Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation. Materials Science and Engineering C, 2017, 71, 678-684.	3.8	120
71	Effects of small intestinal submucosa content on the adhesion and proliferation of retinal pigment epithelial cells on SIS-PLGA films. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 99-108.	1.3	10
72	Preparation of Pendant Group-Functionalized Diblock Copolymers with Adjustable Thermogelling Behavior. Polymers, 2017, 9, 239.	2.0	4

#	Article	IF	CITATIONS
73	In Situ Volumetric Muscle Repair. , 2016, , 295-312.		2
74	The effect of collagen hydrogel on 3D culture of ovarian follicles. Biomedical Materials (Bristol), 2016, 11, 065009.	1.7	51
75	Three-dimensional cell-based bioprinting for soft tissue regeneration. Tissue Engineering and Regenerative Medicine, 2016, 13, 647-662.	1.6	50
76	MP56-03 USE OF A NEIGHBORING UNINJURED NERVE FOR RESTORATION OF TISSUE FUNCTION. Journal of Urology, 2016, 195, .	0.2	0
77	Tissue-Engineered Vascular Grafts by Combining Cell Sheet and Electrospun Scaffold. Journal of the American College of Surgeons, 2016, 223, e64.	0.2	0
78	Three-Dimensional Bioprinting of Muscle Constructs for Reconstruction. Journal of the American College of Surgeons, 2016, 223, e189.	0.2	0
79	3D printed polyurethane prosthesis for partial tracheal reconstruction: a pilot animal study. Biofabrication, 2016, 8, 045015.	3.7	55
80	Fluorescent imaging of endothelial cells in bioengineered blood vessels: the impact of crosslinking of the scaffold. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 955-966.	1.3	5
81	Combination of small RNAs for skeletal muscle regeneration. FASEB Journal, 2016, 30, 1198-1206.	0.2	14
82	A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology, 2016, 34, 312-319.	9.4	2,078
83	CD133 antibody conjugation to decellularized human heart valves intended for circulating cell capture. Biomedical Materials (Bristol), 2015, 10, 055001.	1.7	9
84	In vivo evaluation of functionalized muscle scaffolds for reconstruction. Journal of the American College of Surgeons, 2015, 221, e137.	0.2	0
85	Functional recovery of denervated muscle by neurotization using nerve guidance channels. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 838-846.	1.3	4
86	Synthetic Extracellular Microenvironment for Modulating Stem Cell Behaviors. Biomarker Insights, 2015, 10s1, BMI.S20057.	1.0	26
87	A novel tissue-engineered trachea with a mechanical behavior similarÂto native trachea. Biomaterials, 2015, 62, 106-115.	5.7	110
88	Biomaterials in Regenerative Medicine. , 2015, , 151-167.		5
89	Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology. Acta Biomaterialia, 2015, 16, 14-22.	4.1	121
90	MP29-18 PREFABRICATION OF NEUROMUSCULAR JUNCTION FOR ACCELERATED RECOVERY OF MUSCLE FUNCTION. Journal of Urology, 2015, 193, .	0.2	0

#	Article	IF	CITATIONS
91	MP29-19 BUILDING VIABLE TISSUES USING A 3-D BIOPRINTER FOR SURGICAL RECONSTRUCTION. Journal of Urology, 2015, 193, .	0.2	0
92	Bioprinting of Organoids. , 2015, , 271-282.		3
93	A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomaterialia, 2015, 25, 24-34.	4.1	358
94	A 3D bioprinted complex structure for engineering the muscle–tendon unit. Biofabrication, 2015, 7, 035003.	3.7	293
95	3-D integrated organ printing for ear reconstruction. Journal of the American College of Surgeons, 2015, 221, e26.	0.2	0
96	MP72-08 CELLULARIZED ELECTROSPUN VASCULAR GRAFTS FOR RENAL ARTERY RECONSTRUCTION. Journal of Urology, 2014, 191, .	0.2	0
97	Downregulation of Metabolic Activity Increases Cell Survival Under Hypoxic Conditions: Potential Applications for Tissue Engineering. Tissue Engineering - Part A, 2014, 20, 2265-2272.	1.6	21
98	3-D organ printing technologies for tissue engineering applications. , 2014, , 236-253.		5
99	Formation of Neuromuscular Junction for Accelerated Recovery of Muscle Function. Journal of the American College of Surgeons, 2014, 219, S139-S140.	0.2	0
100	Bioprinting technology and its applications. European Journal of Cardio-thoracic Surgery, 2014, 46, 342-348.	0.6	271
101	In situ regeneration of skeletal muscle tissue through host cell recruitment. Acta Biomaterialia, 2014, 10, 4332-4339.	4.1	68
102	Combination of Small RNAs Enhances Muscle Development. Journal of the American College of Surgeons, 2014, 219, S138.	0.2	0
103	Auricular Reconstruction Using Tissue-Engineered Alloplastic Implants for Improved Clinical Outcomes. Plastic and Reconstructive Surgery, 2014, 133, 360e-369e.	0.7	24
104	3D Printed Biomaterials for Maxillofacial Tissue Engineering and Reconstruction – A Review. Open Journal of Biomedical Materials Research, 2014, 1, 34.	0.1	1
105	Applicability and Safety of in Vitro Skin Expansion Using a Skin Bioreactor: A Clinical Trial. Archives of Plastic Surgery, 2014, 41, 661-667.	0.4	12
106	Recent Applications of Polymeric Biomaterials and Stem Cells in Tissue Engineering and Regenerative Medicine. Porrime, 2014, 38, 113-128.	0.0	6
107	Protocol for the Differentiation of BMSCs to a Smooth Muscle Cell for the Application of Engineering Small Diameter Blood Vessels. Manuals in Biomedical Research, 2014, , 109-118.	0.0	0
108	Controllable dual protein delivery through electrospun fibrous scaffolds with different hydrophilicities. Biomedical Materials (Bristol), 2013, 8, 014104.	1.7	26

#	Article	IF	CITATIONS
109	Highly charged cyanine fluorophores for trafficking scaffold degradation. Biomedical Materials (Bristol), 2013, 8, 014109.	1.7	24
110	<i>In vitro</i> osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide- <i>co</i> -glycolide) (PLGA)–bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering. Biomedical Materials (Bristol), 2013, 8, 014107.	1.7	30
111	Diaphragmatic muscle reconstruction with an aligned electrospun poly(ε-caprolactone)/collagen hybrid scaffold. Biomaterials, 2013, 34, 8235-8240.	5.7	53
112	The effect of inÂvitro formation of acetylcholine receptor (AChR) clusters in engineered muscle fibers on subsequent innervation of constructs inÂvivo. Biomaterials, 2013, 34, 3246-3255.	5.7	43
113	In situ tissue regeneration through host stem cell recruitment. Experimental and Molecular Medicine, 2013, 45, e57-e57.	3.2	202
114	Scaffold technologies for controlling cell behavior in tissue engineering. Biomedical Materials (Bristol), 2013, 8, 010201.	1.7	34
115	Near-Infrared Fluorescence Imaging for Noninvasive Trafficking of Scaffold Degradation. Scientific Reports, 2013, 3, 1198.	1.6	65
116	Dynamic, Nondestructive Imaging of a Bioengineered Vascular Graft Endothelium. PLoS ONE, 2013, 8, e61275.	1.1	10
117	Understanding the Role of Growth Factors in Modulating Stem Cell Tenogenesis. PLoS ONE, 2013, 8, e83734.	1.1	90
118	Combined systemic and local delivery of stem cell inducing/recruiting factors for in situ tissue regeneration. FASEB Journal, 2012, 26, 158-168.	0.2	72
119	Use of a neighboring uninjured nerve for restoration of tissue function. Journal of the American College of Surgeons, 2012, 215, S145.	0.2	0
120	Amniotic Fluid-Derived Stem Cells as a Cell Source for Bone Tissue Engineering. Tissue Engineering - Part A, 2012, 18, 2518-2527.	1.6	39
121	Controlled heparin conjugation on electrospun poly(ε-caprolactone)/gelatin fibers for morphology-dependent protein delivery and enhanced cellular affinity. Acta Biomaterialia, 2012, 8, 2549-2558.	4.1	51
122	Bilayered constructs aimed at osteochondral strategies: The influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Acta Biomaterialia, 2012, 8, 2795-2806.	4.1	53
123	End-to-side neurorrhaphy using an electrospun PCL/collagen nerve conduit for complex peripheral motor nerve regeneration. Biomaterials, 2012, 33, 9027-9036.	5.7	88
124	Amniotic fluid-derived stem cells in regenerative medicine research. Archives of Pharmacal Research, 2012, 35, 271-280.	2.7	62
125	The effect of differentiation stage of amniotic fluid stem cells on bone regeneration. Biomaterials, 2012, 33, 6069-6078.	5.7	42
126	The effect of controlled release of PDGF-BB from heparin-conjugated electrospun PCL/gelatin scaffolds on cellular bioactivity and infiltration. Biomaterials, 2012, 33, 6709-6720.	5.7	142

#	Article	IF	CITATIONS
127	Bioengineered self-seeding heart valves. Journal of Thoracic and Cardiovascular Surgery, 2012, 143, 201-208.	0.4	70
128	Engineered Cartilage Covered Ear Implants for Auricular Cartilage Reconstruction. Biomacromolecules, 2011, 12, 306-313.	2.6	58
129	The realistic prediction of oxygen transport in a tissue-engineered scaffold by introducing time-varying effective diffusion coefficients. Acta Biomaterialia, 2011, 7, 3345-3353.	4.1	18
130	Co-electrospun dual scaffolding system with potential for muscle–tendon junction tissue engineering. Biomaterials, 2011, 32, 1549-1559.	5.7	175
131	The Digit. , 2011, , 1091-1103.		0
132	Bilayered scaffold for engineering cellularized blood vessels. Biomaterials, 2010, 31, 4313-4321.	5.7	297
133	Bilayered vascular scaffolds for engineering cellularized small diameter blood vessels. Journal of the American College of Surgeons, 2010, 211, S144-S145.	0.2	2
134	Regulated Heparin Release using Novel Quantum Dots for Potential Application to Vascular Graft Engineering. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 1191-1198.	1.2	2
135	Bioreactor Maintained Living Skin Matrix. Tissue Engineering - Part A, 2009, 15, 861-868.	1.6	29
136	Integrated scaffolding system for the engineering of muscle-tendon junction. Journal of the American College of Surgeons, 2009, 209, S62.	0.2	2
137	Electrospun vascular scaffolds as a bypass graft: A feasibility study in vivo. Journal of the American College of Surgeons, 2009, 209, S140.	0.2	0
138	The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials, 2009, 30, 583-588.	5.7	331
139	The influence of electrospun aligned poly(É›-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials, 2008, 29, 2899-2906.	5.7	558
140	The use of thermal treatments to enhance the mechanical properties of electrospun poly(É›-caprolactone) scaffolds. Biomaterials, 2008, 29, 1422-1430.	5.7	209
141	Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials, 2008, 29, 2891-2898.	5.7	321
142	Host Cell Mobilization for <i>In Situ</i> Tissue Regeneration. Rejuvenation Research, 2008, 11, 747-756.	0.9	53
143	Stem/Progenitor Cell Mobilization for Tissue Regeneration. FASEB Journal, 2008, 22, 579.5.	0.2	0
144	The vomeronasal organ and adjacent glands express components of signaling cascades found in sensory neurons in the main olfactory system. Molecules and Cells, 2008, 26, 503-13.	1.0	2

#	Article	IF	CITATIONS
145	<i>In vitro</i> evaluation of electrospun nanofiber scaffolds for vascular graft application. Journal of Biomedical Materials Research - Part A, 2007, 83A, 999-1008.	2.1	239
146	Oxygen producing biomaterials for tissue regeneration. Biomaterials, 2007, 28, 4628-4634.	5.7	211
147	In vitro evaluation of a poly(lactide-co-glycolide)–collagen composite scaffold for bone regeneration. Biomaterials, 2006, 27, 3466-3472.	5.7	95
148	Controlled fabrication of a biological vascular substitute. Biomaterials, 2006, 27, 1088-1094.	5.7	414
149	Preparation of Sponge Using Porcine Small Intesinal Submucosa and Their Applications as a Scaffold and a Wound Dressing. , 2006, 585, 209-222.		15
150	Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes. Biomaterials, 2004, 25, 4699-4707.	5.7	144
151	Proliferation rate of fibroblast cells on polyethylene surfaces with wettability gradient. Journal of Applied Polymer Science, 2004, 92, 599-606.	1.3	67
152	Response of human chondrocytes on polymer surfaces with different micropore sizes for tissue-engineered cartilage. Journal of Applied Polymer Science, 2004, 92, 2784-2790.	1.3	15
153	Macroporous biodegradable natural/synthetic hybrid scaffolds as small intestine submucosa impregnated poly(D, L-lactide-co-glycolide) for tissue-engineered bone. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 1003-1017.	1.9	66
154	The effect of surface wettability on induction and growth of neurites from the PC-12 cell on aÂpolymer surface. Journal of Colloid and Interface Science, 2003, 259, 228-235.	5.0	141
155	Preparation and Characterization of Natural/Synthetic Hybrid Scaffolds. Advances in Experimental Medicine and Biology, 2003, 534, 235-245.	0.8	11
156	Interaction of human chondrocytes and NIH/3T3 fibroblasts on chloric acid-treated biodegradable polymer surfaces. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 197-212.	1.9	64
157	Effect of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) surface with different wettability on fibroblast behavior. Macromolecular Research, 2002, 10, 150-157.	1.0	15
158	Preparation and characterization of small intestine submucosa powder impregnated poly(L-lactide) scaffolds: the application for tissue engineered bone and cartilage. Macromolecular Research, 2002, 10, 158-167.	1.0	37
159	The Effect of Fluid Shear Stress on Endothelial Cell Adhesiveness to Polymer Surfaces with Wettability Gradient. Journal of Colloid and Interface Science, 2000, 230, 84-90.	5.0	135
160	Interaction of fibroblasts on polycarbonate membrane surfaces with different micropore sizes and hydrophilicity. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 283-294.	1.9	91
161	Prediction of Mechanical Behavior of 3D Bioprinted Tissue-Engineered Scaffolds Using Finite Element Method (FEM) Analysis. SSRN Electronic Journal, 0, , .	0.4	1