Xue-Li Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4262542/publications.pdf

Version: 2024-02-01

394421 377865 1,435 114 19 34 citations h-index g-index papers 114 114 114 1403 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sensitivity improved Cerenkov luminescence endoscopy using optimal system parameters. Quantitative lmaging in Medicine and Surgery, 2022, 12, 425-438.	2.0	2
2	Two-stage deep learning network-based few-view image reconstruction for parallel-beam projection tomography. Quantitative Imaging in Medicine and Surgery, 2022, 12, 2535-2551.	2.0	2
3	Early diagnosis and bioimaging of lung adenocarcinoma cells/organs based on spectroscopy machine learning. Journal of Innovative Optical Health Sciences, 2022, 15 , .	1.0	5
4	Instrumentation and methodology for volumetric stimulated Raman scattering imaging. , 2022, , 189-201.		0
5	Salidroside Promotes Sensitization to Doxorubicin in Human Cancer Cells by Affecting the PI3K/Akt/HIF Signal Pathway and Inhibiting the Expression of Tumor-Resistance-Related Proteins. Journal of Natural Products, 2022, 85, 196-204.	3.0	9
6	Editorial: Optical Molecular Imaging in Cancer Research. Frontiers in Oncology, 2022, 12, 870583.	2.8	0
7	Quantitative chemical sensing of drugs in scattering media with Bessel beam Raman spectroscopy. Biomedical Optics Express, 2022, 13, 2488.	2.9	4
8	Resolution and Contrast Enhancement for Lensless Digital Holographic Microscopy and Its Application in Biomedicine. Photonics, 2022, 9, 358.	2.0	10
9	Highly efficient Chemo/Photothermal therapy alleviating tumor hypoxia against cancer and attenuate liver metastasis in vivo. Chemical Engineering Journal, 2022, 448, 137724.	12.7	9
10	Multi-focus image fusion with enhancement filtering for robust vascular quantification using photoacoustic microscopy. Optics Letters, 2022, 47, 3732.	3.3	3
11	Machine learning-based automatic segmentation of region of interest in dynamic optical imaging. AIP Advances, 2021, 11, 015029.	1.3	6
12	Biosynthesized Quantum Dots as Improved Biocompatible Tools for Biomedical Applications. Current Medicinal Chemistry, 2021, 28, 496-513.	2.4	7
13	Simulation of stimulated Raman scattering signal generation in scattering tissues excited by Bessel beams. Journal of Innovative Optical Health Sciences, 2021, 14, 2150008.	1.0	4
14	Drug detection in different pharmaceutical dosage forms with Bessel beam-based Raman spectroscopy. , 2021, , .		1
15	Editorial: Imaging Technology in Oncology Pharmacological Research. Frontiers in Pharmacology, 2021, 12, 711387.	3.5	1
16	Classification of unlabeled cells using lensless digital holographic images and deep neural networks. Quantitative Imaging in Medicine and Surgery, 2021, 11, 4137-4148.	2.0	4
17	Accelerated Stimulated Raman Projection Tomography by Sparse Reconstruction From Sparse-View Data. IEEE Transactions on Biomedical Engineering, 2020, 67, 1293-1302.	4.2	6
18	Plasmonic modulated upconversion fluorescence by adjustable distributed gold nanoparticles. Journal of Luminescence, 2020, 220, 116974.	3.1	9

#	Article	IF	CITATIONS
19	Removal of random-valued impulse noise from Cerenkov luminescence images. Medical and Biological Engineering and Computing, 2020, 58, 131-141.	2.8	2
20	Effective reconstruction of bioluminescence tomography based on GPU-accelerated inverse Monte Carlo method. AIP Advances, 2020, 10, 105329.	1.3	2
21	Wide-field Raman spectroscopic imaging with frequency modulation based spatially encoded light illumination. AIP Advances, 2020, 10, 095012.	1.3	0
22	Kinetic modeling and analysis of dynamic bioluminescence imaging of substrates administered by intraperitoneal injection. Quantitative Imaging in Medicine and Surgery, 2020, 10, 389-396.	2.0	0
23	Light-activated semiconducting polymer dots as mimic oxidases with remarkable catalytic efficiency: characteristics, mechanisms, and applications. Chemical Communications, 2020, 56, 3035-3038.	4.1	13
24	Stimulated Raman scattering signal generation in a scattering medium using self-reconstructing Bessel beams. Photonics Research, 2020, 8, 929.	7.0	7
25	Development of tomographic reconstruction for three-dimensional optical imaging: From the inversion of light propagation to artificial intelligence. Artificial Intelligence in Medical Imaging, 2020, 1, 78-86.	0.6	0
26	The antimicrobial peptide Brevinin-2ISb enhances the innate immune response against methicillin-resistant Staphylococcus aureus by activating DAF-2/DAF-16 signaling in Caenorhabditis elegans, as determined by in vivo imaging. Journal of Bio-X Research, 2020, 3, 205-218.	0.2	0
27	A deep unsupervised clustering-based post-processing framework for high-fidelity Cerenkov luminescence tomography. Journal of Applied Physics, 2020, 128, 193104.	2.5	5
28	Recent Advances in Spontaneous Raman Spectroscopic Imaging: Instrumentation and Applications. Current Medicinal Chemistry, 2020, 27, 6188-6207.	2.4	7
29	Intravenous Administration-Oriented Pharmacokinetic Model for Dynamic Bioluminescence Imaging. IEEE Transactions on Biomedical Engineering, 2019, 66, 843-847.	4.2	1
30	Novel vinyl-modified RGD conjugated silica nanoparticles based on photo click chemistry for <i>in vivo</i> prostate cancer targeted fluorescence imaging. RSC Advances, 2019, 9, 25318-25325.	3.6	9
31	<p>Manganese Oxide Nanoparticles As MRI Contrast Agents In Tumor Multimodal Imaging And Therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 8321-8344.	6.7	155
32	Feasibility Study of Limited-Angle Reconstruction for <i>in Vivo</i> Optical Projection Tomography Based on Novel Sample Fixation. IEEE Access, 2019, 7, 87681-87691.	4.2	2
33	Comparative studies of total-variation-regularized sparse reconstruction algorithms in projection tomography. AIP Advances, $2019, 9, .$	1.3	4
34	Two-Photon Fluorescent Nanoprobe for Glutathione Sensing and Imaging in Living Cells and Zebrafish Using a Semiconducting Polymer Dots Hybrid with Dopamine and \hat{I}^2 -Cyclodextrin. Analytical Chemistry, 2019, 91, 12414-12421.	6.5	36
35	Health effects of kiwi wine on rats: an untargeted metabolic fingerprint study based on GC-MS/TOF. RSC Advances, 2019, 9, 13797-13807.	3.6	12
36	A photo-triggered conjugation approach for attaching RGD ligands to biodegradable mesoporous silica nanoparticles for the tumor fluorescent imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 19, 136-144.	3.3	14

#	Article	IF	CITATIONS
37	Adaptively Hybrid \$3^{ext{rd}}\$ Simplified Spherical Harmonics With Diffusion Equation-Based Multispectral Cerenkov Luminescence Tomography. IEEE Access, 2019, 7, 160779-160785.	4.2	4
38	Docetaxel and Doxorubicin Codelivery by Nanocarriers for Synergistic Treatment of Prostate Cancer. Frontiers in Pharmacology, 2019, 10, 1436.	3.5	34
39	Harnessing the Power of Optical Microscopic and Macroscopic Imaging for Natural Products as Cancer Therapeutics. Frontiers in Pharmacology, 2019, 10, 1438.	3.5	1
40	Simulation of the stimulated Raman scattering signal generation in scattering media excited by Bessel beams. , $2019, \dots$		1
41	Feasibility study of limited-angle reconstruction based in vivo optical projection tomography. , 2019, , .		0
42	Performance improvement of Cerenkov luminescence endoscope by optimizing system structure. , 2019, , .		0
43	Fast stimulated Raman projection tomography with iterative reconstruction from sparse projections. , 2019, , .		0
44	Adaptive extraction of permissible source region based on matched filtering for bioluminescence tomography. , 2019, , .		1
45	Raman spectroscopic imaging with frequency modulation based spatially encoded light. , 2019, , .		0
46	Raman tomography with frequency-modulated excitation and spatially-coded detection. , 2019, , .		0
47	Gamma rays excited radioluminescence tomographic imaging. BioMedical Engineering OnLine, 2018, 17, 45.	2.7	4
48	Comparative evaluations of the Monte Carlo-based light propagation simulation packages for optical imaging. Journal of Innovative Optical Health Sciences, $2018,11,.$	1.0	6
49	Brevinin-2 Drug Family—New Applied Peptide Candidates Against Methicillin-Resistant Staphylococcus aureus and Their Effects on Lys-7 Expression of Innate Immune Pathway DAF-2/DAF-16 in Caenorhabditis elegans. Applied Sciences (Switzerland), 2018, 8, 2627.	2.5	3
50	Hypoxia-activated prodrugs and redox-responsive nanocarriers. International Journal of Nanomedicine, 2018, Volume 13, 6551-6574.	6.7	56
51	Filtered maximum likelihood expectation maximization based global reconstruction for bioluminescence tomography. Medical and Biological Engineering and Computing, 2018, 56, 2067-2081.	2.8	4
52	Hybrid model based unified scheme for endoscopic Cerenkov and radio-luminescence tomography: Simulation demonstration. Journal of Applied Physics, 2018, 123, .	2.5	2
53	An alternative reconstruction framework with optimal permission source region for bioluminescence tomography. Optics Communications, 2018, 427, 112-122.	2.1	2
54	Investigation of the influence of sampling schemes on quantitative dynamic fluorescence imaging. Biomedical Optics Express, 2018, 9, 1859.	2.9	3

#	Article	IF	CITATIONS
55	In vivo near infrared fluorescence imaging and dynamic quantification of pancreatic metastatic tumors using folic acid conjugated biodegradable mesoporous silica nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1867-1877.	3.3	35
56	Silica Cross-Linked Micellar Core–Shell Nanoparticles Encapsulating IR-780 with Strong Bright and Good Biocompatibility for Optical Imaging ⟨i⟩In Vivo⟨/i⟩. Journal of Biomedical Nanotechnology, 2017, 13, 144-154.	1.1	10
57	Cerenkov luminescence imaging guided selective-reconstruction for a flexible dual-head PET. Journal of Instrumentation, 2017, 12, P04005-P04005.	1.2	1
58	Volumetric chemical imaging by stimulated Raman projection microscopy and tomography. Nature Communications, 2017, 8, 15117.	12.8	61
59	Performance evaluation of a rotatory dual-head PET system with 90 ^{Ì,} increments for small animal imaging. Journal of Instrumentation, 2017, 12, P09011-P09011.	1.2	6
60	In Vivo Dual-Modality Fluorescence and Magnetic Resonance Imaging-Guided Lymph Node Mapping with Good Biocompatibility Manganese Oxide Nanoparticles. Molecules, 2017, 22, 2208.	3.8	21
61	Influence of Rotation Increments on Imaging Performance for a Rotatory Dual-Head PET System. BioMed Research International, 2017, 2017, 1-11.	1.9	0
62	Harnessing the Power of Cerenkov Luminescence Imaging for Gastroenterology: Cerenkov Luminescence Endoscopy. Current Medical Imaging, 2017, 13, 50-57.	0.8	8
63	Specific Modeling of Light Propagation in Live Body with Coupled SP3-Radiosity-Diffusion Equation. Journal of Medical Imaging and Health Informatics, 2017, 7, 828-832.	0.3	0
64	Removing Noises Induced by Gamma Radiation in Cerenkov Luminescence Imaging Using a Temporal Median Filter. BioMed Research International, 2016, 2016, 1-9.	1.9	5
65	Multi-atlas registration and adaptive hexahedral voxel discretization for fast bioluminescence tomography. Biomedical Optics Express, 2016, 7, 1549.	2.9	7
66	Investigation of injection dose and camera integration time on quantifying pharmacokinetics of a Cy5.5-GX1 probe with dynamic fluorescence imagingin vivo. Journal of Biomedical Optics, 2016, 21, 086001.	2.6	7
67	In vivo quantifying molecular specificity of Cy55-labeled cyclic 9-mer peptide probe with dynamic fluorescence imaging. Biomedical Optics Express, 2016, 7, 1149.	2.9	12
68	Optical-CT Imaging. Imaging in Medical Diagnosis and Therapy, 2016, , 167-186.	0.0	1
69	Adaptively Alternative Light-Transport-Model-Based Three-Dimensional Optical Imaging for Longitudinal and Quantitative Monitoring of Gastric Cancer in Live Animal. IEEE Transactions on Biomedical Engineering, 2016, 63, 2095-2107.	4.2	8
70	Quantitative analysis of vascular parameters for micro-CT imaging of vascular networks with multi-resolution. Medical and Biological Engineering and Computing, 2016, 54, 511-524.	2.8	8
71	GPU accelerated simplified harmonic spherical approximation equations for three-dimensional optical imaging. Chinese Optics Letters, 2016, 14, 071701-71705.	2.9	0
72	Synthesis and Biological Evaluation of a Novel Apogossypolone Derivative. Letters in Drug Design and Discovery, 2016, 14, 96-101.	0.7	0

#	Article	IF	CITATIONS
73	Intensity Enhanced Cerenkov Luminescence Imaging Using Terbium-Doped Gd ₂ O ₂ S Microparticles. ACS Applied Materials & Interfaces, 2015, 7, 11775-11782.	8.0	29
74	Coupled third-order simplified spherical harmonics and diffusion equation–based fluorescence tomographic imaging of liver cancer. Journal of Biomedical Optics, 2015, 20, 090502.	2.6	6
75	Sensitivity improvement of Cerenkov luminescence endoscope with terbium doped Gd2O2S nanoparticles. Applied Physics Letters, 2015, 106, .	3.3	11
76	Performance evaluation of a 90°-rotating dual-head small animal PET system. Physics in Medicine and Biology, 2015, 60, 5873-5890.	3.0	6
77	Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results. European Radiology, 2015, 25, 1814-1822.	4.5	58
78	Performance investigation of SP3 and diffusion approximation for three-dimensional whole-body optical imaging of small animals. Medical and Biological Engineering and Computing, 2015, 53, 805-814.	2.8	16
79	Hybrid simplified spherical harmonics with diffusion equation for light propagation in tissues. Physics in Medicine and Biology, 2015, 60, 6305-6322.	3.0	12
80	Automatic segmentation method for bone and blood vessel in murine hindlimb. Medical Physics, 2015, 42, 4043-4054.	3.0	9
81	Multimodal Biomedical Optical Imaging Review: Towards Comprehensive Investigation of Biological Tissues. Current Molecular Imaging, 2015, 3, 72-87.	0.7	12
82	In vivoquantitative evaluation of vascular parameters for angiogenesis based on sparse principal component analysis and aggregated boosted trees. Physics in Medicine and Biology, 2014, 59, 7777-7791.	3.0	9
83	Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging. Applied Physics Letters, 2014, 105, .	3.3	31
84	Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies. Biomedical Optics Express, 2014, 5, 3660.	2.9	21
85	Hybrid radiosity-SP3 equation based bioluminescence tomography reconstruction for turbid medium with low- and non-scattering regions. Journal of Applied Physics, 2014, 115, .	2.5	12
86	$\mbox{L}\ 1/2$ regularization based numerical method for effective reconstruction of bioluminescence tomography. Journal of Applied Physics, 2014, 115, .	2.5	23
87	Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model. Biomedical Optics Express, 2013, 4, 2209.	2.9	16
88	Influence investigation of a void region on modeling light propagation in a heterogeneous medium. Applied Optics, 2013, 52, 400.	1.8	8
89	Feasibility study of endoscopic x-ray luminescence computed tomography: Simulation demonstration and phantom application. Journal of Applied Physics, 2013, 114, .	2.5	8
90	Molecular Optical Simulation Environment (MOSE): A Platform for the Simulation of Light Propagation in Turbid Media. PLoS ONE, 2013, 8, e61304.	2.5	53

#	Article	IF	CITATIONS
91	Molecular Optical Simulation Environment. Advanced Topics in Science and Technology in China, 2013, , 15-46.	0.1	5
92	Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography. Applied Optics, 2012, 51, 975.	1.8	24
93	Comparative studies of l_p-regularization-based reconstruction algorithms for bioluminescence tomography. Biomedical Optics Express, 2012, 3, 2916.	2.9	18
94	Single photon emission computed tomography-guided Cerenkov luminescence tomography. Journal of Applied Physics, 2012, 112, 024703.	2.5	27
95	Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection. Journal of Biomedical Optics, 2012, 17, 066015.	2.6	16
96	Hybrid light transport model based bioluminescence tomography reconstruction for early gastric cancer detection. , 2012, , .		2
97	Mapping of bioluminescent images onto CT volume surface for dual-modality BLT and CT imaging. Journal of X-Ray Science and Technology, 2012, 20, 31-44.	1.0	3
98	All-optical quantitative framework for bioluminescence tomography with non-contact measurement. International Journal of Automation and Computing, 2012, 9, 72-80.	4.5	3
99	Experimental Three-Dimensional Bioluminescence Tomography Reconstruction Using the <i>l_p</i> Regularization. Advanced Science Letters, 2012, 16, 125-129.	0.2	2
100	Improved AFEM algorithm for bioluminescence tomography based on dual-mesh alternation strategy. Chinese Optics Letters, 2012, 10, 021701-21704.	2.9	1
101	Graphics processing unit parallel accelerated solution of the discrete ordinates for photon transport in biological tissues. Applied Optics, 2011, 50, 3808.	2.1	8
102	Source sparsity based primal-dual interior-point method for three-dimensional bioluminescence tomography. Optics Communications, 2011, 284, 5871-5876.	2.1	29
103	Multi-modality molecular imaging for gastric cancer research., 2011,,.		2
104	Modeling and reconstruction of optical tomography for endoscopic applications: Simulation demonstration. Applied Physics Letters, 2011, 99, .	3.3	4
105	MULTI-MODALITY MOLECULAR IMAGING FOR GASTRIC CANCER RESEARCH., 2011, , .		O
106	A multi-phase level set framework for source reconstruction in bioluminescence tomography. Journal of Computational Physics, 2010, 229, 5246-5256.	3.8	23
107	Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment. International Journal of Biomedical Imaging, 2010, 2010, 1-9.	3.9	3
108	Qualitative Simulation of Photon Transport in Free Space Based on Monte Carlo Method and Its Parallel Implementation. International Journal of Biomedical Imaging, 2010, 2010, 1-9.	3.9	2

Xue-Li Chen

#	Article	IF	CITATION
109	Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm. Applied Optics, 2010, 49, 5654.	2.1	12
110	In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models. Optics Express, 2010, 18, 13102.	3.4	60
111	3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images. Optics Express, 2010, 18, 19876.	3.4	54
112	Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation. Optics Express, 2010, 18, 24441.	3.4	118
113	A study of photon propagation in free-space based on hybrid radiosity-radiance theorem. Optics Express, 2009, 17, 16266.	3.4	17
114	Supercontinuum fiber laser-based coherent anti-Stokes Raman scattering microscopy for label-free chemical imaging. Journal of Innovative Optical Health Sciences, 0, , .	1.0	0