Jingmai K O'connor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4262459/publications.pdf

Version: 2024-02-01

		109311	168376
112	3,870	35	53
papers	citations	h-index	g-index
119	119	119	1364
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Origin and Diversification of Birds. Current Biology, 2015, 25, R888-R898.	3.9	209
2	A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings. Nature, 2015, 521, 70-73.	27.8	141
3	A Nearly Modern Amphibious Bird from the Early Cretaceous of Northwestern China. Science, 2006, 312, 1640-1643.	12.6	131
4	The oldest record of ornithuromorpha from the early cretaceous of China. Nature Communications, 2015, 6, 6987.	12.8	113
5	A revision of enantiornithine (Aves: Ornithothoraces) skull morphology. Journal of Systematic Palaeontology, 2011, 9, 135-157.	1.5	101
6	Phylogenetic support for a specialized clade of Cretaceous enantiornithine birds with information from a new species. Journal of Vertebrate Paleontology, 2009, 29, 188-204.	1.0	99
7	A new enantiornithine from the Yixian Formation with the first recognized avian enamel specialization. Journal of Vertebrate Paleontology, 2013, 33, 1-12.	1.0	95
8	Preservation of ovarian follicles reveals early evolution of avian reproductive behaviour. Nature, 2013, 495, 507-511.	27.8	86
9	Mummified precocial bird wings in mid-Cretaceous Burmese amber. Nature Communications, 2016, 7, 12089.	12.8	74
10	A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage. Gondwana Research, 2017, 49, 264-277.	6.0	73
11	Insight into the early evolution of the avian sternum from juvenile enantiornithines. Nature Communications, 2012, 3, 1116.	12.8	72
12	Anatomy of the basal ornithuromorph bird <i>Archaeorhynchus spathula</i> from the Early Cretaceous of Liaoning, China. Journal of Vertebrate Paleontology, 2013, 33, 141-152.	1.0	70
13	On the absence of sternal elements in <i>Anchiornis</i> (Paraves) and <i>Sapeornis</i> (Aves) and the complex early evolution of the avian sternum. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13900-13905.	7.1	70
14	The trophic habits of early birds. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 513, 178-195.	2.3	70
15	A redescription of <i>Chaoyangia beishanensis </i> (Aves) and a comprehensive phylogeny of Mesozoic birds. Journal of Systematic Palaeontology, 2013, 11, 889-906.	1.5	65
16	Insights into the evolution of rachis dominated tail feathers from a new basal enantiornithine (Aves:) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf !
17	A new ornithuromorph (Aves: Ornithothoraces) bird from the Jehol Group indicative of higher-level diversity. Journal of Vertebrate Paleontology, 2010, 30, 311-321.	1.0	62
18	Homology and Potential Cellular and Molecular Mechanisms for the Development of Unique Feather Morphologies in Early Birds. Geosciences (Switzerland), 2012, 2, 157-177.	2.2	58

#	Article	IF	CITATIONS
19	Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7900-E7907.	7.1	56
20	A new Jurassic scansoriopterygid and the loss of membranous wings in theropod dinosaurs. Nature, 2019, 569, 256-259.	27.8	54
21	New Species of Enantiornithes (Aves: Ornithothoraces) from the Qiaotou Formation in Northern Hebei, China. Acta Geologica Sinica, 2010, 84, 247-256.	1.4	52
22	Anatomy of the Early Cretaceous Enantiornithine Bird <i>Rapaxavis pani</i> . Acta Palaeontologica Polonica, 2011, 56, 463-475.	0.4	52
23	Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19662-19665.	7.1	52
24	Unique caudal plumage of <i>Jeholornis</i> and complex tail evolution in early birds. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17404-17408.	7.1	52
25	A new specimen of the Early Cretaceous bird <i>Hongshanornis longicresta</i> : insights into the aerodynamics and diet of a basal ornithuromorph. PeerJ, 2014, 2, e234.	2.0	51
26	A NEW BASAL LINEAGE OF EARLY CRETACEOUS BIRDS FROM CHINA AND ITS IMPLICATIONS ON THE EVOLUTION OF THE AVIAN TAIL. Palaeontology, 2008, 51, 775-791.	2.2	48
27	A new species from an ornithuromorph (Aves: Ornithothoraces) dominated locality of the Jehol Biota. Science Bulletin, 2014, 59, 5366-5378.	1.7	47
28	The molecular evolution of feathers with direct evidence from fossils. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3018-3023.	7.1	45
29	A New Species of Pengornithidae (Aves: Enantiornithes) from the Lower Cretaceous of China Suggests a Specialized Scansorial Habitat Previously Unknown in Early Birds. PLoS ONE, 2015, 10, e0126791.	2.5	44
30	New Specimens of Yanornis Indicate a Piscivorous Diet and Modern Alimentary Canal. PLoS ONE, 2014, 9, e95036.	2.5	43
31	Exceptional preservation of soft tissue in a new specimen of Eoconfuciusornis and its biological implications. National Science Review, 2017, 4, 441-452.	9.5	42
32	A new, three-dimensionally preserved enantiornithine bird (Aves: Ornithothoraces) from Gansu Province, north-western China. Zoological Journal of the Linnean Society, 2011, 162, 201-219.	2.3	40
33	An Enantiornithine with a Fan-Shaped Tail, and the Evolution of the Rectricial Complex in Early Birds. Current Biology, 2016, 26, 114-119.	3.9	40
34	Early evolution of the biological bird: perspectives from new fossil discoveries in China. Journal of Ornithology, 2015, 156, 333-342.	1.1	38
35	The appearance and duration of the Jehol Biota: Constraint from SIMS U-Pb zircon dating for the Huajiying Formation in northern China. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14299-14305.	7.1	38
36	A new species of <i>Jeholornis </i> with complete caudal integument. Historical Biology, 2012, 24, 29-41.	1.4	37

#	Article	IF	CITATIONS
37	The most complete enantiornithine from North America and a phylogenetic analysis of the Avisauridae. PeerJ, 2018, 6, e5910.	2.0	37
38	A new piscivorous ornithuromorph from the Jehol Biota. Historical Biology, 2014, 26, 608-618.	1.4	36
39	A bizarre Early Cretaceous enantiornithine bird with unique crural feathers and an ornithuromorph plough-shaped pygostyle. Nature Communications, 2017, 8, 14141.	12.8	35
40	A new robust enantiornithine bird from the Lower Cretaceous of China with scansorial adaptations. Journal of Vertebrate Paleontology, 2014, 34, 657-671.	1.0	32
41	First species of Enantiornithes from Sihedang elucidates skeletal development in Early Cretaceous enantiornithines. Journal of Systematic Palaeontology, 2017, 15, 909-926.	1.5	32
42	Reinterpretation of a previously described Jehol bird clarifies early trophic evolution in the Ornithuromorpha. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172494.	2.6	32
43	The evolution of the modern avian digestive system: insights from paravian fossils from the Yanliao and Jehol biotas. Palaeontology, 2020, 63, 13-27.	2.2	32
44	Evolution of the vomer and its implications for cranial kinesis in Paraves. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19571-19578.	7.1	31
45	A new fossil bird from the Early Cretaceous of Gansu Province, northwestern China. Historical Biology, 2005, 17, 7-14.	1.4	30
46	Complexities and novelties in the early evolution of avian flight, as seen in the Mesozoic Yanliao and Jehol Biotas of Northeast China. Palaeoworld, 2017, 26, 212-229.	1.1	30
47	A new ornithuromorph (Aves) with an elongate rostrum from the Jehol Biota, and the early evolution of rostralization in birds. Journal of Systematic Palaeontology, 2016, 14, 939-948.	1.5	29
48	A flattened enantiornithine in mid-Cretaceous Burmese amber: morphology and preservation. Science Bulletin, 2018, 63, 235-243.	9.0	28
49	An Early Cretaceous enantiornithine (Aves) preserving an unlaid egg and probable medullary bone. Nature Communications, 2019, 10, 1275.	12.8	28
50	Subaqueous foraging among carnivorous dinosaurs. Nature, 2022, 603, 852-857.	27.8	28
51	A reappraisal of <i>Boluochia zhengi </i> (Aves: Enantiornithes) and a discussion of intraclade diversity in the Jehol avifauna, China. Journal of Systematic Palaeontology, 2011, 9, 51-63.	1.5	27
52	Ovarian follicles shed new light on dinosaur reproduction during the transition towards birds. National Science Review, 2014, 1, 15-17.	9.5	27
53	Second species of enantiornithine bird from the Lower Cretaceous Changma Basin, northwestern China with implications for the taxonomic diversity of the Changma avifauna. Cretaceous Research, 2015, 55, 56-65.	1.4	27
54	A new Jehol enantiornithine bird with three-dimensional preservation and ovarian follicles. Journal of Vertebrate Paleontology, 2016, 36, e1054496.	1.0	26

#	Article	IF	CITATIONS
55	<i>Archaeorhynchus</i> preserving significant soft tissue including probable fossilized lungs. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11555-11560.	7.1	26
56	A Second Cretaceous Ornithuromorph Bird from the Changma Basin, Gansu Province, Northwestern China. Acta Palaeontologica Polonica, 2010, 55, 617-625.	0.4	25
57	Evolution and functional significance of derived sternal ossification patterns in ornithothoracine birds. Journal of Evolutionary Biology, 2015, 28, 1550-1567.	1.7	25
58	New information on postcranial skeleton of the Early Cretaceous <i>Gansus yumenensis</i> (Aves:) Tj ETQq0 0 0	0 rgBT /Ον: 1.4	erlock 10 Tf 5
59	Previously Unrecognized Ornithuromorph Bird Diversity in the Early Cretaceous Changma Basin, Gansu Province, Northwestern China. PLoS ONE, 2013, 8, e77693.	2.5	24
60	Dinosaur ossification centres in embryonic birds uncover developmental evolution of the skull. Nature Ecology and Evolution, 2018, 2, 1966-1973.	7.8	24
61	First report of gastroliths in the Early Cretaceous basal bird Jeholornis. Cretaceous Research, 2018, 84, 200-208.	1.4	24
62	A confuciusornithiform (Aves, Pygostylia)-like tarsometatarsus from the Early Cretaceous of Siberia and a discussion of the evolution of avian hind limb musculature. Journal of Vertebrate Paleontology, 2014, 34, 647-656.	1.0	23
63	A previously undescribed specimen reveals new information on the dentition of Sapeornis chaoyangensis. Cretaceous Research, 2017, 74, 1-10.	1.4	23
64	Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens. Scientific Reports, 2018, 8, 9014.	3.3	23
65	Evolution and distribution of medullary bone: evidence from a new Early Cretaceous enantiornithine bird. National Science Review, 2020, 7, 1068-1078.	9.5	23
66	New toothed Early Cretaceous ornithuromorph bird reveals intraclade diversity in pattern of tooth loss. Journal of Systematic Palaeontology, 2020, 18, 631-645.	1.5	22
67	Hummingbird-sized dinosaur from the Cretaceous period of Myanmar. Nature, 2020, 579, 245-249.	27.8	22
68	Dinosaur paleohistology: review, trends and new avenues of investigation. PeerJ, 2019, 7, e7764.	2.0	22
69	An Early Cretaceous enantiornithine bird with a pintail. Current Biology, 2021, 31, 4845-4852.e2.	3.9	21
70	Morphology and distribution of scales, dermal ossifications, and other nonâ€feather integumentary structures in nonâ€avialan theropod dinosaurs. Biological Reviews, 2022, 97, 960-1004.	10.4	20
71	New information on the anatomy of the Chinese Early Cretaceous Bohaiornithidae (Aves:) Tj ETQq $1\ 1\ 0.784314$	rgBT/Over	rlock 10 Tf 50
72	Medullary bone in an Early Cretaceous enantiornithine bird and discussion regarding its identification in fossils. Nature Communications, 2018, 9, 5169.	12.8	18

#	Article	IF	Citations
73	Microraptor with Ingested Lizard Suggests Non-specialized Digestive Function. Current Biology, 2019, 29, 2423-2429.e2.	3.9	18
74	New anatomical information on the bohaiornithid <i>Longusunguis</i> and the presence of a plesiomorphic diapsid skull in Enantiornithes. Journal of Systematic Palaeontology, 2020, 18, 1481-1495.	1.5	17
75	A New Enantiornithine Bird with Unusual Pedal Proportions Found in Amber. Current Biology, 2019, 29, 2396-2401.e2.	3.9	16
76	Hindlimb feathers in paravians: Primarily "wings―or ornaments?. Biology Bulletin, 2015, 42, 616-621.	0.5	15
77	A fully feathered enantiornithine foot and wing fragment preserved in mid-Cretaceous Burmese amber. Scientific Reports, 2019, 9, 927.	3.3	15
78	Cranial osteology of the Early Cretaceous Sapeornis chaoyangensis (Aves: Pygostylia). Cretaceous Research, 2020, 113, 104496.	1.4	15
79	A new Early Cretaceous enantiornithine (Aves, Ornithothoraces) from northwestern China with elaborate tail ornamentation. Journal of Vertebrate Paleontology, 2016, 36, e1054035.	1.0	14
80	Ornamental feathers in Cretaceous Burmese amber: resolving the enigma of rachis-dominated feather structure. Journal of Palaeogeography, 2018, 7, .	1.9	14
81	Origin of the avian predentary and evidence of a unique form of cranial kinesis in Cretaceous ornithuromorphs. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24696-24706.	7.1	14
82	Molecular development of fibular reduction in birds and its evolution from dinosaurs. Evolution; International Journal of Organic Evolution, 2016, 70, 543-554.	2.3	13
83	The phylogenetic position of Ambiortus: Comparison with other Mesozoic birds from Asia. Paleontological Journal, 2013, 47, 1270-1281.	0.5	12
84	Intraskeletal Osteohistovariability Reveals Complex Growth Strategies in a Late Cretaceous Enantiornithine. Frontiers in Earth Science, 2021, 9, .	1.8	11
85	The Plumage of Basal Birds. Fascinating Life Sciences, 2020, , 147-172.	0.9	11
86	Confirmation of ovarian follicles in an enantiornithine (Aves) from the Jehol biota using soft tissue analyses. Communications Biology, 2020, 3, 399.	4.4	10
87	An unusually large bird wing in mid-Cretaceous Burmese amber. Cretaceous Research, 2020, 110, 104412.	1.4	10
88	Winged forelimbs of the small theropod dinosaur Caudipteryx could have generated small aerodynamic forces during rapid terrestrial locomotion. Scientific Reports, 2018, 8, 17854.	3.3	9
89	On the Preservation of the Beak in Confuciusornis (Aves: Pygostylia). Diversity, 2019, 11, 212.	1.7	9
90	A new, remarkably preserved, enantiornithine bird from the Upper Cretaceous Qiupa Formation of Henan (central China) and convergent evolution between enantiornithines and modern birds. Geological Magazine, 2021, 158, 2087-2094.	1.5	9

#	Article	IF	Citations
91	The First Mesozoic Heterodactyl Bird from China. Acta Geologica Sinica, 2006, 80, 631-635.	1.4	7
92	Zheng et al. reply. Nature, 2013, 499, E1-E2.	27.8	7
93	Structure and possible ventilatory function of unusual, expanded sternal ribs in the Early Cretaceous bird Jeholornis. Cretaceous Research, 2020, 116, 104597.	1.4	7
94	Reply to Foth: Preserved cartilage is rare but not absent: Troodontid sternal plates are absent, not rare. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5335-E5335.	7.1	6
95	A mid-Cretaceous enantiornithine foot and tail feather preserved in Burmese amber. Scientific Reports, 2019, 9, 15513.	3.3	6
96	New information on the plumage of Protopteryx (Aves: Enantiornithes) from a new specimen. Cretaceous Research, 2020, 116, 104577.	1.4	6
97	Osteohistology of the Scapulocoracoid of Confuciusornis and Preliminary Analysis of the Shoulder Joint in Aves. Frontiers in Earth Science, 2021, 9, .	1.8	6
98	The evolutionary and functional implications of the unusual quadrate of Longipteryx chaoyangensis (Avialae: Enantiornithes) from the Cretaceous Jehol Biota of China. Journal of Anatomy, 2021, 239, 1066-1074.	1.5	5
99	The first fossil crow (Corvus sp. indet.) from the Early Pleistocene Nihewan Paleolithic sites in North China. Journal of Archaeological Science, 2013, 40, 1623-1628.	2.4	4
100	Exploring the Ecomorphology of Two Cretaceous Enantiornithines With Unique Pedal Morphology. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	4
101	Reinterpretation of purported molting evidence in the Thermopolis Archaeopteryx. Communications Biology, 2021, 4, 837.	4.4	4
102	A newly discovered enantiornithine foot preserved in mid-Cretaceous Burmese amber . Palaeoentomology, 2020, 3, 212-219.	1.0	4
103	A new egg with avian egg shape from the Upper Cretaceous of Zhejiang Province, China. Historical Biology, 2015, 27, 595-602.	1.4	3
104	New Information on the Keratinous Beak of Confuciusornis (Aves: Pygostylia) From Two New Specimens. Frontiers in Earth Science, 2020, 8, .	1.8	3
105	A New Enantiornithine (Aves) Preserved in Mid-Cretaceous Burmese Amber Contributes to Growing Diversity of Cretaceous Plumage Patterns. Frontiers in Earth Science, 2020, 8, .	1.8	3
106	Avian skulls represent a diverse ornithuromorph fauna from the Lower Cretaceous Xiagou Formation, Gansu Province, China. Journal of Systematics and Evolution, 2022, 60, 1172-1198.	3.1	2
107	Reconstruction of <i>Caudipteryx</i> robot to identify the origin of avian flapping flight. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 8358-8366.	2.1	2
108	Synchrotron microtomographyâ€based osteohistology of Gansus yumenensis : new data on the evolution of uninterrupted bone deposition in basal birds. Acta Zoologica, 0, , .	0.8	1

#	Article	IF	CITATIONS
109	The saga of birds. Acta Palaeontologica Polonica, 0, 62, .	0.4	1
110	Investigating Possible Gastroliths in a Referred Specimen of Bohaiornis guoi (Aves: Enantiornithes). Frontiers in Earth Science, $2021, 9, .$	1.8	O
111	Kinematics of wings from Caudipteryx to modern birds. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 4073-4084.	2.1	o
112	3D model related to the publication: Morphology and distribution of scales, dermal ossifications, and other non-feather integumentary structures in non-avialan theropod dinosaurs. MorphoMuseuM, 2022, 8, e162.	0.2	O