Michelangelo Pascale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4262100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of ochratoxin A in wine by means of immunoaffinity column clean-up and high-performance liquid chromatography. Journal of Chromatography A, 1999, 864, 89-101.	1.8	298
2	Mycotoxin risks under a climate change scenario in Europe. Trends in Food Science and Technology, 2019, 84, 38-40.	7.8	186
3	Comprehensive Analytical Comparison of Strategies Used for Small Molecule Aptamer Evaluation. Analytical Chemistry, 2015, 87, 8608-8612.	3.2	139
4	Determination of zearalenone in corn by means of immunoaffinity clean-up and high-performance liquid chromatography with fluorescence detection. Journal of Chromatography A, 1998, 815, 133-140.	1.8	136
5	Determination of ochratoxin A in domestic and imported beers in Italy by immunoaffinity clean-up and liquid chromatography. Journal of Chromatography A, 2000, 888, 321-326.	1.8	135
6	Fusarium and Fumonisin Occurrence in Argentinian Corn at Different Ear Maturity Stages. Journal of Agricultural and Food Chemistry, 1996, 44, 2797-2801.	2.4	131
7	Integrated strategies for the control of Fusarium head blight and deoxynivalenol contamination in winter wheat. Field Crops Research, 2012, 133, 139-149.	2.3	125
8	Reduction of deoxynivalenol during durum wheat processing and spaghetti cooking. Toxicology Letters, 2004, 153, 181-189.	0.4	122
9	Effect of fungicides on the development ofFusarium head blight, yield and deoxynivalenol accumulation in wheat inoculated under field conditions withFusarium graminearum andFusarium culmorum. Journal of the Science of Food and Agriculture, 2005, 85, 191-198.	1.7	122
10	Monoclonal antibody based electrochemical immunosensor for the determination of ochratoxin A in wheat. Talanta, 2006, 69, 1031-1037.	2.9	108
11	Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. Microorganisms, 2020, 8, 1496.	1.6	103
12	Current analytical methods for trichothecene mycotoxins in cereals. TrAC - Trends in Analytical Chemistry, 2009, 28, 758-768.	5.8	102
13	Determination of Ochratoxin A in Wine and Beer by Immunoaffinity Column Cleanup and Liquid Chromatographic Analysis with Fluorometric Detection: Collaborative Study. Journal of AOAC INTERNATIONAL, 2001, 84, 1818-1827.	0.7	99
14	Analysis of T-2 and HT-2 toxins in cereal grains by immunoaffinity clean-up and liquid chromatography with fluorescence detection. Journal of Chromatography A, 2005, 1075, 151-158.	1.8	96
15	Identification and characterization of new <i>Fusarium</i> masked mycotoxins, T2 and HT2 glycosyl derivatives, in naturally contaminated wheat and oats by liquid chromatography–highâ€resolution mass spectrometry. Journal of Mass Spectrometry, 2012, 47, 466-475.	0.7	77
16	Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS Microbiology Letters, 2004, 233, 289-295.	0.7	74
17	Fluorescence polarization immunoassay for rapid screening of ochratoxin A in red wine. Analytical and Bioanalytical Chemistry, 2009, 395, 1317-1323.	1.9	72
18	Screening of deoxynivalenol contamination in durum wheat by MOS-based electronic nose and identification of the relevant pattern of volatile compounds. Food Control, 2014, 37, 263-271.	2.8	71

#	Article	IF	CITATIONS
19	Determination of T-2 toxin in cereal grains by liquid chromatography with fluorescence detection after immunoaffinity column clean-up and derivatization with 1-anthroylnitrile. Journal of Chromatography A, 2003, 989, 257-264.	1.8	65
20	Optimization of a Fluorescence Polarization Immunoassay for Rapid Quantification of Deoxynivalenol in Durum Wheat–Based Products. Journal of Food Protection, 2006, 69, 2712-2719.	0.8	59
21	Determination of HT-2 and T-2 toxins in oats and wheat by ultra-performance liquid chromatography with photodiode array detection. Talanta, 2012, 89, 231-236.	2.9	58
22	Improvement of detection sensitivity of T-2 and HT-2 toxins using different fluorescent labeling reagents by high-performance liquid chromatographyâ~†. Talanta, 2008, 74, 1476-1483.	2.9	57
23	Fate of deoxynivalenol, T-2 and HT-2 toxins and their glucoside conjugates from flour to bread: an investigation by high-performance liquid chromatography high-resolution mass spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2013, 30, 345-355.	1.1	56
24	Rapid prediction of ochratoxin A-producing strains of Penicillium on dry-cured meat by MOS-based electronic nose. International Journal of Food Microbiology, 2016, 218, 71-77.	2.1	53
25	Title is missing!. European Journal of Plant Pathology, 2002, 108, 645-651.	0.8	52
26	Occurrence of Fusarium langsethiae and T-2 and HT-2 Toxins in Italian Malting Barley. Toxins, 2016, 8, 247.	1.5	50
27	Discrimination of geographical origin of oranges (Citrus sinensis L. Osbeck) by mass spectrometry-based electronic nose and characterization of volatile compounds. Food Chemistry, 2019, 277, 25-30.	4.2	50
28	Distribution of T-2 and HT-2 Toxins in Milling Fractions of Durum Wheat. Journal of Food Protection, 2011, 74, 1700-1707.	0.8	47
29	Rapid Analysis of Deoxynivalenol in Durum Wheat by FT-NIR Spectroscopy. Toxins, 2014, 6, 3129-3143.	1.5	46
30	Detection methods for mycotoxins in cereal grains and cereal products. Zbornik Matice Srpske Za Prirodne Nauke, 2009, , 15-25.	0.0	45
31	Natural occurrence of fumonisins and their correlation to Fusarium contamination in commercial corn hybrids growth in Argentina. Mycopathologia, 1996, 135, 29-34.	1.3	44
32	Rapid method for the determination of ochratoxin A in urine by immunoaffinity column clean-up and high-performance liquid chromatography. Mycopathologia, 2001, 152, 91-95.	1.3	43
33	Detection of Fusarium culmorum in wheat by a surface plasmon resonance-based DNA sensor. Journal of Microbiological Methods, 2006, 66, 529-537.	0.7	42
34	Use of itaconic acid-based polymers for solid-phase extraction of deoxynivalenol and application to pasta analysis. Analytica Chimica Acta, 2008, 609, 131-138.	2.6	42
35	Accumulation of Fumonisins in Maize Hybrids Inoculated under Field Conditions withFusarium moniliforme Sheldon. Journal of the Science of Food and Agriculture, 1997, 74, 1-6.	1.7	41
36	REVIEW: An Overview on <i>Fusarium</i> Mycotoxins in the Durum Wheat Pasta Production Chain. Cereal Chemistry, 2010, 87, 21-27.	1.1	38

#	Article	IF	CITATIONS
37	Performance evaluation of LC–MS/MS methods for multi-mycotoxin determination in maize and wheat by means of international Proficiency Testing. TrAC - Trends in Analytical Chemistry, 2017, 86, 222-234.	5.8	38
38	A rapid fluorescence polarization immunoassay for the determination of T-2 and HT-2 toxins in wheat. Analytical and Bioanalytical Chemistry, 2011, 401, 2561-2571.	1.9	37
39	Effect of alkaline cooking of maize on the content of fumonisins B1 and B2 and their hydrolysed forms. Food Chemistry, 2016, 192, 1083-1089.	4.2	37
40	Effect of sowing date and insecticide application against European corn borer (Lepidoptera:) Tj ETQq0 0 0 rgB ⁻	Г /Overlock 1.0	10
41	Natural co-occurrence of aflatoxins and ochratoxin A in ginger (Zingiber officinale) from Nigeria. Food Control, 2017, 73, 1061-1067.	2.8	34
42	Positive Correlation between High Levels of Ochratoxin A and Resveratrol-Related Compounds in Red Wines. Journal of Agricultural and Food Chemistry, 2007, 55, 6807-6812.	2.4	33
43	Fourier transform nearâ€infrared and midâ€infrared spectroscopy as efficient tools for rapid screening of deoxynivalenol contamination in wheat bran. Journal of the Science of Food and Agriculture, 2019, 99, 1946-1953.	1.7	32
44	Fumonisin production by, and mating populations of, Fusarium section Liseola isolates from maize in Argentina. Mycological Research, 1998, 102, 141-144.	2.5	30
45	Mycotoxin profile of <i>Fusarium langsethiae</i> isolated from wheat in Italy: production of typeâ€A trichothecenes and relevant glucosyl derivatives. Journal of Mass Spectrometry, 2013, 48, 1291-1298.	0.7	30
46	Fluorescence Polarization Immunoassay for Rapid, Accurate and Sensitive Determination of Ochratoxin A in Wheat. Food Analytical Methods, 2014, 7, 298-307.	1.3	30
47	Screening and Identification of DNA Aptamers to Tyramine Using <i>in Vitro</i> Selection and High-Throughput Sequencing. ACS Combinatorial Science, 2016, 18, 302-313.	3.8	30
48	Occurrence of fumonisins in Europe and the BCR—measurements and testing projects. Natural Toxins, 1995, 3, 269-274.	1.0	29
49	Determination of Fumonisin B1 in maize using molecularly imprinted polymer nanoparticles-based assay. Food Chemistry, 2019, 298, 125044.	4.2	29
50	Study of the natural occurrence of T-2 and HT-2 toxins and their glucosyl derivatives from field barley to malt by high-resolution Orbitrap mass spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 1647-1655.	1.1	28
51	Rapid screening of ochratoxin A in wheat by infrared spectroscopy. Food Chemistry, 2019, 282, 95-100.	4.2	28
52	Effects of agrochemical treatments on the occurrence of Fusarium ear rot and fumonisin contamination of maize in Southern Italy. Field Crops Research, 2011, 123, 161-169.	2.3	27
53	Tracing the Geographical Origin of Durum Wheat by FT-NIR Spectroscopy. Foods, 2019, 8, 450.	1.9	27
54	Determination of Ochratoxin A in Wine by Means of Immunoaffinity and Aminopropyl Solid-Phase Column Cleanup and Fluorometric Detection. Journal of Agricultural and Food Chemistry, 2013, 61, 1604-1608.	2.4	26

#	Article	IF	CITATIONS
55	Determination of Deoxynivalenol and Nivalenol in Wheat by Ultra-Performance Liquid Chromatography/Photodiode-Array Detector and Immunoaffinity Column Cleanup. Food Analytical Methods, 2014, 7, 555-562.	1.3	26
56	Use of liquid chromatography-high-resolution mass spectrometry for isolation and characterization of hydrolyzed fumonisins and relevant analysis in maize-based products. Journal of Mass Spectrometry, 2014, 49, 297-305.	0.7	25
57	Determination of Deoxynivalenol in Wheat Bran and Whole-Wheat Flour by Fluorescence Polarization Immunoassay. Food Analytical Methods, 2014, 7, 806-813.	1.3	25
58	Rapid prediction of deoxynivalenol contamination in wheat bran by MOSâ€based electronic nose and characterization of the relevant pattern of volatile compounds. Journal of the Science of Food and Agriculture, 2018, 98, 4955-4962.	1.7	23
59	Comparison of In-Solution Biorecognition Properties of Aptamers against Ochratoxin A. Toxins, 2016, 8, 336.	1.5	22
60	Overview of Recent Liquid Chromatography Mass Spectrometry-Based Methods for Natural Toxins Detection in Food Products. Toxins, 2022, 14, 328.	1.5	22
61	Mycotoxin contamination of maize hybrids after infection withFusarium proliferatum. Journal of the Science of Food and Agriculture, 1999, 79, 2094-2098.	1.7	21
62	Management of fumonisin contamination in maize kernels through the timing of insecticide application against the European corn borer <i>Ostrinia nubilalis</i> Hübner. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2009, 26, 1501-1514.	1.1	20
63	Determination of Zearalenone and Trichothecenes, Including Deoxynivalenol and Its Acetylated Derivatives, Nivalenol, T-2 and HT-2 Toxins, in Wheat and Wheat Products by LC-MS/MS: A Collaborative Study. Toxins, 2020, 12, 786.	1.5	20
64	Assessment of <i>Fusarium</i> infection in wheat heads using a quantitative polymerase chain reaction (qPCR) assay. Food Additives and Contaminants, 2007, 24, 1121-1130.	2.0	19
65	Rapid and reliable detection of glyphosate in pome fruits, berries, pulses and cereals by flow injection – Mass spectrometry. Food Chemistry, 2020, 310, 125813.	4.2	19
66	Evaluation of Mycotoxin Screening Tests in a Verification Study Involving First Time Users. Toxins, 2019, 11, 129.	1.5	18
67	Aflatoxin Reduction in Maize by Industrial-Scale Cleaning Solutions. Toxins, 2020, 12, 331.	1.5	18
68	Analysis of genes early expressed during Aspergillus flavus colonisation of hazelnut. International Journal of Food Microbiology, 2010, 137, 111-115.	2.1	17
69	Fluorescence Polarization Immunoassay for the Determination of T-2 and HT-2 Toxins and Their Glucosides in Wheat. Toxins, 2019, 11, 380.	1.5	17
70	Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: A case study. LWT - Food Science and Technology, 2020, 127, 109368.	2.5	17
71	Fumonisin Production on Irradiated Corn Kernels: Effect of Inoculum Size. Journal of Food Protection, 1999, 62, 814-817.	0.8	16
72	Occurrence of <i>Fusarium langsethiae</i> Strains Isolated from Durum Wheat in Italy. Journal of Phytopathology, 2015, 163, 612-619.	0.5	16

#	Article	IF	CITATIONS
73	Optimization and Validation of a Fluorescence Polarization Immunoassay for Rapid Detection of T-2 and HT-2 Toxins in Cereals and Cereal-Based Products. Food Analytical Methods, 2016, 9, 3310-3318.	1.3	16
74	Accumulation of fumonisins, beauvericin and fusaproliferin in maize hybrids inoculated under field conditions with Fusarium proliferatum. Mycological Research, 2002, 106, 1026-1030.	2.5	15
75	Inâ€house validation and smallâ€scale collaborative study to evaluate analytical performances of multimycotoxin screening methods based on liquid chromatography–highâ€resolution mass spectrometry: Case study on <i>Fusarium</i> toxins in wheat. Journal of Mass Spectrometry, 2018, 53, 743-752.	0.7	15
76	Mass spectrometry-based electronic nose to authenticate 100% Italian durum wheat pasta and characterization of volatile compounds. Food Chemistry, 2022, 383, 132548.	4.2	15
77	Performance Evaluation of LC-MS Methods for Multimycotoxin Determination. Journal of AOAC INTERNATIONAL, 2019, 102, 1708-1720.	0.7	14
78	Critical Comparison of Analytical Performances of Two Immunoassay Methods for Rapid Detection of Aflatoxin M1 in Milk. Toxins, 2020, 12, 270.	1.5	13
79	LC-tandem mass spectrometry as a screening tool for multiple detection of allergenic ingredients in complex foods. Acta IMEKO (2012), 2016, 5, 5.	0.4	13
80	Survey of T-2 and HT-2 toxins in soybean and soy meal from Argentina using immunoaffinity clean-up and high performance liquid chromatography. World Mycotoxin Journal, 2011, 4, 189-197.	0.8	12
81	Influence of agronomic conditions on the efficacy of different fungicides applied to wheat at heading: effect on flag leaf senescence, Fusarium head blight attack, grain yield and deoxynivalenol contamination. Italian Journal of Agronomy, 2011, 6, 32.	0.4	11
82	Application of an Integrated and Open Source Workflow for LC-HRMS Plant Metabolomics Studies. Case-Control Study: Metabolic Changes of Maize in Response to Fusarium verticillioides Infection. Frontiers in Plant Science, 2020, 11, 664.	1.7	11
83	Inhibition of Species of the <i>Aspergillus</i> Section <i>Nigri</i> and Ochratoxin A Production in Grapes by Fusapyrone. Applied and Environmental Microbiology, 2008, 74, 2248-2253.	1.4	10
84	Comparison of Slurry Mixing and Dry Milling in Laboratory Sample Preparation for Determination of Ochratoxin A and Deoxynivalenol in Wheat. Journal of AOAC INTERNATIONAL, 2012, 95, 452-458.	0.7	10
85	An In-Silico Pipeline for Rapid Screening of DNA Aptamers against Mycotoxins: The Case-Study of Fumonisin B1, Aflatoxin B1 and Ochratoxin A. Polymers, 2020, 12, 2983.	2.0	10
86	Rapid Authentication of 100% Italian Durum Wheat Pasta by FT-NIR Spectroscopy Combined with Chemometric Tools. Foods, 2020, 9, 1551.	1.9	10
87	European intercomparison study for the determination of fumonisins in maize. Mikrochimica Acta, 1996, 123, 55-61.	2.5	9
88	A simple design for the validation of a FT-NIR screening method: Application to the detection of durum wheat pasta adulteration. Food Chemistry, 2020, 333, 127449.	4.2	9
89	Validation of a lateral flow immunoassay for the rapid determination of aflatoxins in maize by solvent free extraction. Analytical Methods, 2018, 10, 123-130.	1.3	9
90	New η5- and μ-(O)-Rh(I) phenoxide complexes: synthesis, characterisation and unconventional reactivity of η5-complexes towards carbon dioxide. Journal of Organometallic Chemistry, 2000, 605, 143-150.	0.8	8

MICHELANGELO PASCALE

#	Article	IF	CITATIONS
91	Rapid Method for Determination of Phosphine Residues in Wheat. Food Analytical Methods, 2008, 1, 220-225.	1.3	7
92	Determination of Ochratoxin A in Rye and Rye-Based Products by Fluorescence Polarization Immunoassay. Toxins, 2017, 9, 305.	1.5	7
93	Performance Evaluation of LC-MS Methods for Multimycotoxin Determination. Journal of AOAC INTERNATIONAL, 2019, 102, 1708-1720.	0.7	7
94	Recent Developments in Trichothecene Analysis. ACS Symposium Series, 2008, , 192-210.	0.5	6
95	Natural Occurrence of Ochratoxin A in Blood and Milk Samples from Jennies and Their Foals after Delivery. Toxins, 2020, 12, 758.	1.5	5
96	Determination of T-2 and HT-2 Toxins in Oats and Oat-Based Breakfast Cereals by Liquid-Chromatography Tandem Mass Spectrometry. Methods in Molecular Biology, 2017, 1536, 127-136.	0.4	5
97	Mycotoxin Analysis of Grain via Dust Sampling: Review, Recent Advances and the Way Forward: The Contribution of the MycoKey Project. Toxins, 2022, 14, 381.	1.5	4
98	Ear rot susceptibility and mycotoxin contamination of maize hybrids inoculated with Fusarium species under field conditions. , 2002, , 645-651.		3
99	Surface Plasmon Resonance Genosensor for the Detection of Fusarium culmorum. Methods in Molecular Biology, 2013, 968, 155-165.	0.4	3
100	Interactions between cyclodextrins and fluorescent T-2 and HT-2 toxin derivatives: a physico-chemical study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 75, 285-292.	1.6	2
101	Physico-Chemical Investigation on the Interaction Between Ochratoxin A and Heptakis-2,6-di-O-Methyl-l ² -Cyclodextrin. Journal of Solution Chemistry, 2014, 43, 1436-1447.	0.6	2
102	Grain Safety Assurance, Including Impacts on Durum Wheat Trading 1 1©The Canadian Grain Commission, Government of Canada , 2012, , 251-277.		0