
Gale M Strasburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4261761/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal stress affects proliferation and differentiation of turkey satellite cells through the mTOR/S6K pathway in a growth-dependent manner. PLoS ONE, 2022, 17, e0262576.	1.1	13
2	Temperature and Growth Selection Effects on Proliferation, Differentiation, and Adipogenic Potential of Turkey Myogenic Satellite Cells Through Frizzled-7-Mediated Wnt Planar Cell Polarity Pathway. Frontiers in Physiology, 2022, 13, .	1.3	7
3	Phosphorylation state of pyruvate dehydrogenase and metabolite levels in turkey skeletal muscle in normal and pale, soft, exudative meats. British Poultry Science, 2021, 62, 379-386.	0.8	0
4	Response of turkey pectoralis major muscle satellite cells to hot and cold thermal stress: Effect of growth selection on satellite cell proliferation and differentiation. Comparative Biochemistry and Physiology Part A, Molecular & Dirgrative Physiology, 2021, 252, 110823.	0.8	20
5	Effect of Temperature and Selection for Growth on Intracellular Lipid Accumulation and Adipogenic Gene Expression in Turkey Pectoralis Major Muscle Satellite Cells. Frontiers in Physiology, 2021, 12, 667814.	1.3	15
6	Data Mining Identifies Differentially Expressed Circular RNAs in Skeletal Muscle of Thermally Challenged Turkey Poults. Frontiers in Physiology, 2021, 12, 732208.	1.3	2
7	Knockdown of Death-Associated Protein Expression Induces Global Transcriptome Changes in Proliferating and Differentiating Muscle Satellite Cells. Frontiers in Physiology, 2020, 11, 1036.	1.3	0
8	Coldâ€batter mincing of hotâ€boned and crustâ€freezeâ€airâ€chilled ham muscle reduced fat content in protein gels. International Journal of Food Science and Technology, 2020, 55, 3267-3277.	1.3	5
9	Muscle Abnormalities and Meat Quality Consequences in Modern Turkey Hybrids. Frontiers in Physiology, 2020, 11, 554.	1.3	15
10	Transcriptional Profiles of Skeletal Muscle Associated With Increasing Severity of White Striping in Commercial Broilers. Frontiers in Physiology, 2020, 11, 580.	1.3	13
11	Fat Reduction in Processed Meat Using Hot-Boning and Cold-Batter Mincing Technology. Meat and Muscle Biology, 2020, 3, .	0.7	0
12	Absolute expressions of hypoxia-inducible factor-1 alpha (HIF1A) transcript and the associated genes in chicken skeletal muscle with white striping and wooden breast myopathies. PLoS ONE, 2019, 14, e0220904.	1.1	44
13	Comparison of raw meat quality and protein-gel properties of turkey breast fillets processed by traditional or cold-batter mincing technology. Poultry Science, 2019, 98, 2299-2304.	1.5	2
14	Thermal challenge alters the transcriptional profile of the breast muscle in turkey poults. Poultry Science, 2019, 98, 74-91.	1.5	3
15	Fat Reduction in Processed Meat Using Hot-Boning and Cold-Batter Mincing Technology. Meat and Muscle Biology, 2019, 3, 37-37.	0.7	0
16	Consumer acceptance and aroma characterization of navy bean (<i>Phaseolus vulgaris</i>) powders prepared by extrusion and conventional processing methods. Journal of the Science of Food and Agriculture, 2017, 97, 4142-4150.	1.7	15
17	Bioactive compounds in Diospyros mafiensis roots inhibit growth, sporulation and aflatoxin production by Aspergillus flavus and Aspergillus parasiticus. World Mycotoxin Journal, 2017, 10, 237-248.	0.8	5
18	Response of turkey muscle satellite cells to thermal challenge. I. transcriptome effects in proliferating cells. BMC Genomics, 2017, 18, 352.	1.2	14

#	Article	IF	CITATIONS
19	Influence of temperature and growth selection on turkey pectoralis major muscle satellite cell adipogenic gene expression and lipid accumulation. Poultry Science, 2017, 96, 1015-1027.	1.5	17
20	Response of Turkey Muscle Satellite Cells to Thermal Challenge. II. Transcriptome Effects in Differentiating Cells. Frontiers in Physiology, 2017, 8, 948.	1.3	15
21	Aflatoxin levels in sunflower seeds and cakes collected from micro- and small-scale sunflower oil processors in Tanzania. PLoS ONE, 2017, 12, e0175801.	1.1	29
22	Quantification of Pyruvate Dehydrogenase in Normal and PSE Turkey Breast Muscles. Meat and Muscle Biology, 2017, 1, 62-62.	0.7	0
23	Particle Size, Surface Area, and Amorphous Content as Predictors of Solubility and Bioavailability for Five Commercial Sources of Ferric Orthophosphate in Ready-To-Eat Cereal. Nutrients, 2016, 8, 129.	1.7	7
24	Temperature effect on proliferation and differentiation of satellite cells from turkeys with different growth rates. Poultry Science, 2016, 95, 934-947.	1.5	37
25	Monitoring of Chicken RNA Integrity as a Function of Prolonged Postmortem Duration. Asian-Australasian Journal of Animal Sciences, 2015, 28, 1649-1656.	2.4	8
26	Cold-batter mincing of hot-boned and crust-freezing air-chilled turkey breast improved meat turnover time and product quality. Poultry Science, 2014, 93, 711-718.	1.5	7
27	Deep transcriptome sequencing reveals differences in global gene expression between normal and pale, soft, and exudative turkey meat1. Journal of Animal Science, 2014, 92, 1250-1260.	0.2	10
28	Differential gene expression between normal and pale, soft, and exudative turkey meat. Poultry Science, 2013, 92, 1621-1633.	1.5	26
29	John Gergely (1919–2013): a pillar in the muscle protein field. Journal of Muscle Research and Cell Motility, 2013, 34, 441-446.	0.9	0
30	Expression profiles for genes in the turkey major histocompatibility complexB-locus. Poultry Science, 2013, 92, 1523-1534.	1.5	5
31	Function of death-associated protein 1 in proliferation, differentiation, and apoptosis of chicken satellite cells. Muscle and Nerve, 2013, 48, 777-790.	1.0	12
32	Versican, matrix Gla protein, and death-associated protein expression affect muscle satellite cell proliferation and differentiation. Poultry Science, 2012, 91, 1964-1973.	1.5	21
33	Differential expression of calcium-regulating genes in heat-stressed turkey breast muscle is associated with meat quality. Poultry Science, 2012, 91, 1418-1424.	1.5	21
34	Versican, Matrix-Gla Protein, and Death-Associated Protein Expression Affect Muscle Satellite Cell Proliferation and Differentiation. Biophysical Journal, 2012, 102, 512a.	0.2	0
35	Differential expression of genes characterizing myofibre phenotype. Animal Genetics, 2012, 43, 298-308.	0.6	10
36	Characterization of a 6K oligonucleotide turkey skeletal muscle microarray. Animal Genetics, 2011, 42, 75-82.	0.6	15

#	Article	IF	CITATIONS
37	Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle. BMC Genomics, 2011, 12, 143.	1.2	41
38	Pale, soft, exudative turkey—The role of ryanodine receptor variation in meat quality. Poultry Science, 2009, 88, 1497-1505.	1.5	58
39	Characterization of expressed sequence tags from turkey skeletal muscle. Animal Genetics, 2008, 39, 635-644.	0.6	13
40	The effect of heat stress on thyroid hormone response and meat quality in turkeys of two genetic lines. Meat Science, 2008, 80, 615-622.	2.7	50
41	Characterization of a Cardiac Complementary Deoxyribonucleic Acid Library from the Turkey (Meleagris gallopavo). Poultry Science, 2008, 87, 1165-1170.	1.5	1
42	Binding property of avian skeletal muscle ryanodine receptor isoforms with dihydropyridine receptor and calmodulin. Journal of Muscle Research and Cell Motility, 2007, 28, 59-66.	0.9	2
43	Divergent mechanisms in generating molecular variations of αRYR and βRYR in turkey skeletal muscle. Journal of Muscle Research and Cell Motility, 2007, 28, 343-354.	0.9	11
44	Physicochemical properties and bioavailability of five sources of ferric orthophosphate in readyâ€ŧoâ€eat cereal. FASEB Journal, 2007, 21, A1113.	0.2	0
45	Potent lipid peroxidation inhibitors from Withania somnifera fruits. Tetrahedron, 2004, 60, 3109-3121.	1.0	65
46	Identification of two αRYR alleles and characterization of αRYR transcript variants in turkey skeletal muscle. Gene, 2004, 330, 177-184.	1.0	21
47	Antioxidant Activity of 3-Dehydroshikimic Acid in Liposomes, Emulsions, and Bulk Oil. Journal of Agricultural and Food Chemistry, 2003, 51, 2753-2757.	2.4	21
48	A Model System Study of the Inhibition of Heterocyclic Aromatic Amine Formation by Organosulfur Compounds. Journal of Agricultural and Food Chemistry, 2002, 50, 7684-7690.	2.4	45
49	Inhibition of Heterocyclic Aromatic Amine Formation in Fried Ground Beef Patties by Garlic and Selected Garlic-Related Sulfur Compounds. Journal of Food Protection, 2002, 65, 1766-1770.	0.8	43
50	Reduction of Heterocyclic Aromatic Amine Formation and Overall Mutagenicity in Fried Ground Beef Patties by Organosulfur Compounds. Journal of Food Science, 2002, 67, 3304-3308.	1.5	23
51	Comparison of iron-catalyzed DNA and lipid oxidation. Journal of Biochemical and Molecular Toxicology, 2001, 15, 114-119.	1.4	22
52	Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn Phytomedicine, 2000, 7, 7-13.	2.3	312
53	Cyclooxygenase active bioflavonoids from Balatonâ,,¢ tart cherry and their structure activity relationships. Phytomedicine, 2000, 7, 15-19.	2.3	29
54	Differential Ca ²⁺ sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. American Journal of Physiology - Cell Physiology, 2000, 279, C724-C733.	2.1	119

#	Article	IF	CITATIONS
55	Calmodulin and Excitation-Contraction Coupling. Physiology, 2000, 15, 281-284.	1.6	21
56	Modulation of Liposomal Membrane Fluidity by Flavonoids and Isoflavonoids. Archives of Biochemistry and Biophysics, 2000, 373, 102-109.	1.4	503
57	Regulation of RYR1 Activity by Ca2+and Calmodulinâ€. Biochemistry, 2000, 39, 7807-7812.	1.2	106
58	Oxidation of the skeletal muscle Ca ²⁺ release channel alters calmodulin binding. American Journal of Physiology - Cell Physiology, 1999, 276, C46-C53.	2.1	65
59	The effect of cyclopiazonic acid on the development of pale, soft, and exudative pork from pigs of defined malignant hyperthermia genotype Journal of Animal Science, 1999, 77, 166.	0.2	3
60	Analysis and pharmacokinetics of cyclopiazonic acid in market weight pigs Journal of Animal Science, 1999, 77, 173.	0.2	14
61	Antioxidant and Antiinflammatory Activities of Anthocyanins and Their Aglycon, Cyanidin, from Tart Cherries. Journal of Natural Products, 1999, 62, 294-296.	1.5	548
62	Biologically Active Carbazole Alkaloids fromMurrayakoenigii. Journal of Agricultural and Food Chemistry, 1999, 47, 444-447.	2.4	197
63	Novel Antioxidant Compounds from Tart Cherries (Prunus cerasus). Journal of Natural Products, 1999, 62, 86-88.	1.5	78
64	Apocalmodulin and Ca2+Calmodulin Bind to the Same Region on the Skeletal Muscle Ca2+Release Channelâ€. Biochemistry, 1999, 38, 8532-8537.	1.2	134
65	Antioxidant and Antiinflammatory Activities of Anthocyanins and Their Aglycon, Cyanidin, from Tart Cherries. Journal of Natural Products, 1999, 62, 802-802.	1.5	300
66	Antioxidant Polyphenols from Tart Cherries (Prunuscerasus). Journal of Agricultural and Food Chemistry, 1999, 47, 840-844.	2.4	153
67	Skeletal muscle calcium channel ryanodine binding activity in genetically unimproved and commercial turkey populations. Poultry Science, 1999, 78, 792-797.	1.5	26
68	Structure–Activity Relationships for Antioxidant Activities of a Series of Flavonoids in a Liposomal System. Free Radical Biology and Medicine, 1998, 24, 1355-1363.	1.3	456
69	Antioxidant Activities of Isoflavones and Their Biological Metabolites in a Liposomal System. Archives of Biochemistry and Biophysics, 1998, 356, 133-141.	1.4	357
70	Interaction of the SR CaATPase with the cytoplasmic region of phospholamban. Biochemical Society Transactions, 1998, 26, S228-S228.	1.6	1
71	A Novel Fluorescent Method for Rapid Screening of Compounds for Antioxidant Activity. , 1998, , 79-89.		0
72	Quantification and Characterization of Anthocyanins in Balaton Tart Cherries. Journal of Agricultural and Food Chemistry, 1997, 45, 2556-2560.	2.4	75

#	Article	IF	CITATIONS
73	Development and validation of fluorescence spectroscopic assays to evaluate antioxidant efficacy. Application to metal chelators. JAOCS, Journal of the American Oil Chemists' Society, 1997, 74, 1031-1040.	0.8	43
74	Reaction of 3-Dehydroshikimic Acid with Molecular Oxygen and Hydrogen Peroxide:  Products, Mechanism, and Associated Antioxidant Activity. Journal of the American Chemical Society, 1996, 118, 11587-11591.	6.6	23
75	The Binding of Distinct Segments of Actin to Multiple Sites in the C-Terminus of Caldesmon: Comparative Aspects of Actin Interaction with Troponin-I and Caldesmon. Biochemistry, 1995, 34, 1893-1901.	1.2	18
76	Theory and applications of fluorescence spectroscopy in food research. Trends in Food Science and Technology, 1995, 6, 69-75.	7.8	89
77	Calmodulin interaction with the skeletal muscle sarcoplasmic reticulum calcium channel protein. Biochemistry, 1994, 33, 518-525.	1.2	82
78	Influence of diet on lipid oxidation and membrane structure in porcine muscle microsomes. Journal of Agricultural and Food Chemistry, 1994, 42, 59-63.	2.4	84
79	Localization and functional role of the calmodulin-binding domain of phospholamban in cardiac sarcoplasmic reticulum vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1149, 249-259.	1.4	1
80	Interaction of the cytoplasmic domain of phospholamban with calmodulin. Biochemical Society Transactions, 1993, 21, 265S-265S.	1.6	0
81	Interaction of calmodulin with phospholamban and caldesmon: comparative studies by 1H-NMR spectroscopy. BBA - Proteins and Proteomics, 1992, 1160, 22-34.	2.1	11
82	Identity of the calmodulin-binding proteins in bovine lens plasma membranes. Experimental Eye Research, 1990, 50, 495-503.	1.2	27
83	Calcium dependence of the distance between Cys-98 of troponin C and Cys-133 of troponin I in the ternary troponin complex. Resonance energy transfer measurements. Biochemistry, 1989, 28, 5902-5908.	1.2	52
84	Site-specific derivatives of wheat germ calmodulin. Interactions with troponin and sarcoplasmic reticulum Journal of Biological Chemistry, 1988, 263, 542-548.	1.6	76
85	Site-specific derivatives of wheat germ calmodulin. Interactions with troponin and sarcoplasmic reticulum. Journal of Biological Chemistry, 1988, 263, 542-8.	1.6	43
86	Phosphorylation of troponin I by protein kinase C: Mechanism of inhibition by calmodulin and troponin C. Biochimica Et Biophysica Acta - Molecular Cell Research, 1987, 931, 339-346.	1.9	4
87	Molecular structure of troponin C from chicken skeletal muscle at 3Ã resolution. Journal of Biosciences, 1985, 8, 451-460.	0.5	2
88	Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science, 1985, 227, 945-948.	6.0	381
89	Troponin-C-mediated calcium-sensitive changes in the conformation of troponin I detected by pyrene excimer fluorescence. Journal of Biological Chemistry, 1985, 260, 366-70.	1.6	14
90	X-ray diffraction studies of troponin-C crystals from rabbit and chicken skeletal muscles. Journal of Biological Chemistry, 1980, 255, 3806-8.	1.6	10

#	Article	IF	CITATIONS
91	The native subunit pattern of tropomyosin. FEBS Letters, 1976, 72, 11-14.	1.3	21