Thomas W Kuyper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4261316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil quality – A critical review. Soil Biology and Biochemistry, 2018, 120, 105-125.	4.2	1,441
2	Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant and Soil, 2007, 300, 9-20.	1.8	940
3	Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends in Ecology and Evolution, 2001, 16, 248-254.	4.2	627
4	Towards a multidimensional root trait framework: a tree root review. New Phytologist, 2016, 211, 1159-1169.	3.5	432
5	Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?. Soil Biology and Biochemistry, 2009, 41, 1233-1244.	4.2	400
6	The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 2020, 6, .	4.7	377
7	Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems and Environment, 2006, 116, 72-84.	2.5	296
8	A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiology Reviews, 2013, 37, 477-494.	3.9	277
9	The role of fungi in weathering. Frontiers in Ecology and the Environment, 2004, 2, 258-264.	1.9	271
10	Syndromes of production in intercropping impact yield gains. Nature Plants, 2020, 6, 653-660.	4.7	259
11	The way forward in biochar research: targeting tradeâ€offs between the potential wins. GCB Bioenergy, 2015, 7, 1-13.	2.5	228
12	Sustainable intensification in agriculture: the richer shade of green. A review. Agronomy for Sustainable Development, 2017, 37, 1.	2.2	228
13	Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 2012, 169, 895-904.	0.9	216
14	An innovation systems approach to institutional change: Smallholder development in West Africa. Agricultural Systems, 2012, 108, 74-83.	3.2	210
15	Molecular Identification of Ectomycorrhizal Mycelium in Soil Horizons. Applied and Environmental Microbiology, 2003, 69, 327-333.	1.4	206
16	Loss of secondaryâ€forest resilience by landâ€use intensification in the <scp>A</scp> mazon. Journal of Ecology, 2015, 103, 67-77.	1.9	194
17	Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant and Soil, 2008, 303, 35-47.	1.8	179
18	Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO 2. New Phytologist, 2005, 167, 859-868.	3.5	168

#	Article	IF	CITATIONS
19	An integrated framework of plant form and function: the belowground perspective. New Phytologist, 2021, 232, 42-59.	3.5	153
20	Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: A review. Environmental Pollution, 2019, 246, 148-162.	3.7	147
21	Eco-functionality of organic matter in soils. Plant and Soil, 2020, 455, 1-22.	1.8	116
22	Diversity of an ectomycorrhizal fungal community studied by a root tip and total soil DNA approach. Mycorrhiza, 2005, 15, 1-6.	1.3	107
23	Dark septate root endophytic fungi increase growth of Scots pine seedlings under elevated CO2 through enhanced nitrogen use efficiency. Plant and Soil, 2010, 328, 459-470.	1.8	107
24	Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: A meta-analysis of potential photosynthate limitation of symbioses. Soil Biology and Biochemistry, 2010, 42, 125-127.	4.2	106
25	Plant species identity surpasses species richness as a key driver of <scp><scp>N₂O</scp></scp> emissions from grassland. Global Change Biology, 2014, 20, 265-275.	4.2	100
26	Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. Journal of Cleaner Production, 2016, 139, 429-439.	4.6	90
27	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.	2.7	90
28	Yield gain, complementarity and competitive dominance in intercropping in China: A meta-analysis of drivers of yield gain using additive partitioning. European Journal of Agronomy, 2020, 113, 125987.	1.9	88
29	Quantification of ectomycorrhizal mycelium in soil by real-time PCR compared to conventional quantification techniques. FEMS Microbiology Ecology, 2003, 45, 283-292.	1.3	86
30	Mycorrhizal associations in the rain forest of South Cameroon. Forest Ecology and Management, 2001, 140, 277-287.	1.4	85
31	Deconstructing and unpacking scientific controversies in intensification and sustainability: why the tensions in concepts and values?. Current Opinion in Environmental Sustainability, 2014, 8, 80-88.	3.1	85
32	Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L. Scientific Reports, 2020, 10, 4916.	1.6	85
33	Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant and Soil, 2007, 290, 283-291.	1.8	83
34	Colonization by Arbuscular Mycorrhizal Fungi of Sorghum Leads to Reduced Germination and Subsequent Attachment and Emergence of <i>Striga hermonthica</i> . Plant Signaling and Behavior, 2007, 2, 58-62.	1.2	81
35	High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Global Change Biology, 2021, 27, 2061-2075.	4.2	77
36	Emission of <scp>CO</scp> ₂ from biocharâ€amended soils and implications for soil organic carbon. GCB Bioenergy, 2015, 7, 1294-1304.	2.5	76

#	Article	IF	CITATIONS
37	Molecular diversity of arbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in the Netherlands. Mycorrhiza, 2009, 19, 317-328.	1.3	71
38	Fine-root trait plasticity of beech (Fagus sylvatica) and spruce (Picea abies) forests on two contrasting soils. Plant and Soil, 2017, 415, 175-188.	1.8	71
39	Epilogue: global food security, rhetoric, and the sustainable intensification debate. Current Opinion in Environmental Sustainability, 2014, 8, 71-79.	3.1	68
40	Title is missing!. Agroforestry Systems, 2003, 58, 33-43.	0.9	65
41	Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2. Plant and Soil, 2007, 296, 159-172.	1.8	63
42	Land use as a filter for species composition in Amazonian secondary forests. Journal of Vegetation Science, 2016, 27, 1104-1116.	1.1	63
43	Evaluating sustainable and profitable cropping sequences with cassava and four legume crops: Effects on soil fertility and maize yields in the forest/savannah transitional agro-ecological zone of Ghana. Field Crops Research, 2007, 103, 87-97.	2.3	62
44	Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nature Ecology and Evolution, 2021, 5, 1123-1134.	3.4	62
45	Genetic analysis of the interaction between Allium species and arbuscular mycorrhizal fungi. Theoretical and Applied Genetics, 2011, 122, 947-960.	1.8	61
46	Increased arbuscular mycorrhizal fungal colonization reduces yield loss of rice (Oryza sativa L.) under drought. Mycorrhiza, 2020, 30, 315-328.	1.3	60
47	Farmers' agronomic and social evaluation of productivity, yield and N2-fixation in different cowpea varieties and their subsequent residual N effects on a succeeding maize crop. Nutrient Cycling in Agroecosystems, 2008, 80, 199.	1.1	56
48	Swiddens under transition: Consequences of agricultural intensification in the Amazon. Agriculture, Ecosystems and Environment, 2016, 218, 116-125.	2.5	55
49	Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability. Chemosphere, 2017, 166, 352-362.	4.2	55
50	Arbuscular Mycorrhizal Fungi Negatively Affect Nitrogen Acquisition and Grain Yield of Maize in a N Deficient Soil. Frontiers in Microbiology, 2018, 9, 418.	1.5	55
51	Phylogenetic Relationships in the Genus Hebeloma Based on ITS1 and 2 Sequences, with Special Emphasis on the Hebeloma crustuliniforme Complex. Mycologia, 2000, 92, 269.	0.8	52
52	A widely distributed ITS polymorphism within a biological species of the ectomycorrhizal fungus Hebeloma velutipes. Mycological Research, 2001, 105, 284-290.	2.5	52
53	Title is missing!. Plant and Soil, 2001, 230, 161-174.	1.8	49
54	Photosynthetic adaptation of soybean due to varying effectiveness of N2 fixation by two distinct Bradyrhizobium japonicum strains. Environmental and Experimental Botany, 2012, 76, 1-6.	2.0	48

#	Article	IF	CITATIONS
55	Agricultural waste utilisation strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia. Waste Management, 2015, 44, 82-93.	3.7	46
56	Molecular composition of several soil organic matter fractions from anthropogenic black soils (Terra Preta de Ãndio) in Amazonia — A pyrolysis-GC/MS study. Geoderma, 2017, 288, 154-165.	2.3	46
57	Big data integration: Pan-European fungal species observations' assembly for addressing contemporary questions in ecology and global change biology. Fungal Biology Reviews, 2017, 31, 88-98.	1.9	45
58	Considerations and consequences of allowing DNA sequence data as types of fungal taxa. IMA Fungus, 2018, 9, 167-175.	1.7	45
59	Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes. Journal of Applied Ecology, 2019, 56, 132-143.	1.9	45
60	Six simple guidelines for introducing new genera of fungi. IMA Fungus, 2015, 6, A65-A68.	1.7	44
61	Earthworms change the quantity and composition of dissolved organic carbon and reduce greenhouse gas emissions during composting. Waste Management, 2017, 62, 43-51.	3.7	44
62	Phosphate Uptake from Phytate Due to Hyphae-Mediated Phytase Activity by Arbuscular Mycorrhizal Maize. Frontiers in Plant Science, 2017, 8, 684.	1.7	44
63	Pseudoxylaria as stowaway of the fungus-growing termite nest: Interaction asymmetry between Pseudoxylaria, Termitomyces and free-living relatives. Fungal Ecology, 2011, 4, 322-332.	0.7	42
64	Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage. Agriculture, Ecosystems and Environment, 2015, 211, 94-101.	2.5	42
65	Arbuscular mycorrhizal associations in Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands of Northern Ethiopia. Forest Ecology and Management, 2010, 260, 2160-2169.	1.4	40
66	Legacy effects of diversity in space and time driven by winter cover crop biomass and nitrogen concentration. Journal of Applied Ecology, 2018, 55, 299-310.	1.9	40
67	Effects of arbuscular mycorrhizal fungi on damage by Striga hermonthica on two contrasting cultivars of sorghum, Sorghum bicolor. Agriculture, Ecosystems and Environment, 2001, 87, 29-35.	2.5	39
68	Ectomycorrhizal fungi associated with <i>Pinus sylvestris</i> seedlings respond differently to increased carbon and nitrogen availability: implications for ecosystem responses to global change. Global Change Biology, 2009, 15, 166-175.	4.2	37
69	The promises of the Amazonian soil: shifts in discourses of Terra Preta and biochar. Journal of Environmental Policy and Planning, 2019, 21, 623-635.	1.5	37
70	Land tenure and differential soil fertility management practices among native and migrant farmers in Wenchi, Ghana: implications for interdisciplinary action research. Njas - Wageningen Journal of Life Sciences, 2004, 52, 331-348.	7.9	36
71	Decomposition and nutrient release in leaves of Atlantic Rainforest tree species used in agroforestry systems. Agroforestry Systems, 2013, 87, 835-847.	0.9	35
72	Continentalâ€scale macrofungal assemblage patterns correlate with climate, soil carbon and nitrogen deposition. Journal of Biogeography, 2018, 45, 1942-1953.	1.4	35

#	Article	IF	CITATIONS
73	European mushroom assemblages are darker in cold climates. Nature Communications, 2019, 10, 2890.	5.8	34
74	Differential Access to Phosphorus Pools of an Oxisol by Mycorrhizal and Nonmycorrhizal Maize. Communications in Soil Science and Plant Analysis, 2006, 37, 1537-1551.	0.6	33
75	The use of plant-specific pyrolysis products as biomarkers in peat deposits. Quaternary Science Reviews, 2015, 123, 254-264.	1.4	33
76	Colonization by arbuscular mycorrhizal fungi improves salinity tolerance of eucalyptus (Eucalyptus) Tj ETQq0 0 () rgBT /Ov 1.6	verlogk 10 Tf 5
77	Analysis of phosphorus by 31PNMR in Oxisols under agroforestry and conventional coffee systems in Brazil. Geoderma, 2003, 112, 51-70.	2.3	32
78	Breeding Beyond Monoculture: Putting the "Intercrop―Into Crops. Frontiers in Plant Science, 2021, 12, 734167.	1.7	32
79	Diagnosing the scope for innovation: Linking smallholder practices and institutional context. Njas - Wageningen Journal of Life Sciences, 2012, 60-63, 1-6.	7.9	30
80	Source and transformations of lignin in Carex-dominated peat. Soil Biology and Biochemistry, 2012, 53, 32-42.	4.2	30
81	Ectomycorrhizas and tipping points in forest ecosystems. New Phytologist, 2021, 231, 1700-1707.	3.5	30
82	Explaining European fungal fruiting phenology with climate variability. Ecology, 2018, 99, 1306-1315.	1.5	29
83	High turnover of fungal hyphae in incubation experiments. FEMS Microbiology Ecology, 2009, 67, 389-396.	1.3	28
84	Openâ€source data reveal how collectionsâ€based fungal diversity is sensitive to global change. Applications in Plant Sciences, 2019, 7, e01227.	0.8	28
85	Intercompatibility Tests in the Hebeloma crustuliniforme Complex in Northwestern Europe. Mycologia, 1999, 91, 783.	0.8	27
86	Root nitrogen concentration of sorghum above 2% produces least Striga hermonthica seed stimulation. Annals of Applied Biology, 2006, 149, 255-262.	1.3	25
87	Mycorrhizal impacts on root trait plasticity of six maize varieties along a phosphorus supply gradient. Plant and Soil, 2020, 448, 71-86.	1.8	25
88	Phosphorus pools in Oxisols under shaded and unshaded coffee systems on farmers' fields in Brazil. Agroforestry Systems, 2003, 58, 55-64.	0.9	24
89	Title is missing!. Plant and Soil, 2001, 232, 155-165.	1.8	23
90	Radioactive caesium from Chernobyl in fungi. The Mycologist, 1989, 3, 3-6.	0.5	22

#	Article	IF	CITATIONS
91	Woodland ectomycorrhizal fungi benefit from largeâ€scale reduction in nitrogen deposition in the Netherlands. Journal of Applied Ecology, 2018, 55, 290-298.	1.9	21
92	Mycorrhizal Associations in Agroforestry Systems. Soil Biology, 2010, , 185-208.	0.6	20
93	Testing for complementarity in phosphorus resource use by mixtures of crop species. Plant and Soil, 2019, 439, 163-177.	1.8	20
94	Arbuscular mycorrhizal symbiosis increases phosphorus uptake and productivity of mixtures of maize varieties compared to monocultures. Journal of Applied Ecology, 2020, 57, 2203-2211.	1.9	20
95	Knowledge and utilization of edible mushrooms by local populations of the rain forest of south Cameroon. Ambio, 2003, 32, 19-23.	2.8	20
96	Can Arbuscular Mycorrhizal Fungi Contribute to <i>Striga</i> Management on Cereals in Africa?. Outlook on Agriculture, 2006, 35, 307-311.	1.8	19
97	Do Anthropogenic Dark Earths Occur in the Interior of Borneo? Some Initial Observations from East Kalimantan. Forests, 2012, 3, 207-229.	0.9	17
98	Arbuscular mycorrhizal impacts on competitive interactions between Acacia etbaica and Boswellia papyrifera seedlings under drought stress. Journal of Plant Ecology, 2014, 7, 298-308.	1.2	17
99	Rhizoplane Bacteria and Plant Species Co-determine Phosphorus-Mediated Microbial Legacy Effect. Frontiers in Microbiology, 2019, 10, 2856.	1.5	17
100	Field performance of different maize varieties in growth cores at natural and reduced mycorrhizal colonization: yield gains and possible fertilizer savings in relation to phosphorus application. Plant and Soil, 2020, 450, 613-624.	1.8	17
101	Mycorrhizal associations change root functionality: a 3D modelling study on competitive interactions between plants for light and nutrients. New Phytologist, 2021, 231, 1171-1182.	3.5	17
102	Action research on alternative land tenure arrangements in Wenchi, Ghana: learning from ambiguous social dynamics and self-organized institutional innovation. Agriculture and Human Values, 2008, 25, 389-403.	1.7	15
103	Arbuscular mycorrhiza and water and nutrient supply differently impact seedling performance of dry woodland species with different acquisition strategies. Plant Ecology and Diversity, 2015, 8, 387-399.	1.0	15
104	Carbon and Energy Sources of Mycorrhizal Fungi. , 2017, , 357-374.		15
105	Basket of options: Unpacking the concept. Outlook on Agriculture, 2021, 50, 116-124.	1.8	15
106	Double pot and double compartment: Integrating two approaches to study nutrient uptake by arbuscular mycorrhizal fungi. Plant and Soil, 2004, 260, 301-310.	1.8	14
107	Phylogeographic patterns in Leccinum sect. Scabra and the status of the arctic-alpine species L. rotundifoliae. Mycological Research, 2007, 111, 663-672.	2.5	14
108	Biochar: An emerging policy arrangement in Brazil?. Environmental Science and Policy, 2015, 51, 45-55.	2.4	14

#	Article	IF	CITATIONS
109	Plant presence reduces root and shoot litter decomposition rates of crops and wild relatives. Plant and Soil, 2019, 438, 313-327.	1.8	14
110	Soil biodiversity and nature-mimicry in agriculture; the power of metaphor?. Outlook on Agriculture, 2022, 51, 75-90.	1.8	14
111	Evidence confirms an anthropic origin of Amazonian Dark Earths. Nature Communications, 2022, 13, .	5.8	14
112	Spatial variation of carbon and nutrients stocks in Amazonian Dark Earth. Geoderma, 2019, 337, 322-332.	2.3	13
113	Growth response of three native timber species to soils with different arbuscular mycorrhizal inoculum potentials in South Cameroon. Forest Ecology and Management, 2005, 210, 283-290.	1.4	12
114	A simple staining method for observation of germinated <i>Striga</i> seeds. Seed Science Research, 2008, 18, 125-129.	0.8	12
115	Organic matter and seed survival of Striga hermonthica – Mechanisms for seed depletion in the soil. Crop Protection, 2011, 30, 1594-1600.	1.0	12
116	Ectomycorrhiza and the open nitrogen cycle in an afrotropical rainforest. New Phytologist, 2012, 195, 728-729.	3.5	12
117	The danger of mycorrhizal traps?. New Phytologist, 2014, 203, 352-354.	3.5	12
118	Women, shea, and finance: how institutional practices in a Malian cooperative create development impact. International Journal of Agricultural Sustainability, 2014, 12, 263-275.	1.3	12
119	Rapid decomposition of traditionally produced biochar in an Oxisol under savannah in Northeastern Brazil. Geoderma Regional, 2015, 6, 1-6.	0.9	12
120	Distinct arbuscular mycorrhizal fungal communities associate with different manioc landraces and Amazonian soils. Mycorrhiza, 2019, 29, 263-275.	1.3	12
121	Incorporating belowground traits: avenues towards a wholeâ€ŧree perspective on performance. Oikos, 2023, 2023, .	1.2	12
122	Maize varieties can strengthen positive plant-soil feedback through beneficial arbuscular mycorrhizal fungal mutualists. Mycorrhiza, 2019, 29, 251-261.	1.3	11
123	The montane multifunctional landscape: How stakeholders in a biosphere reserve derive benefits and address trade-offs in ecosystem service supply. Ecosystem Services, 2020, 44, 101134.	2.3	10
124	Ancestral predisposition toward a domesticated lifestyle in the termite-cultivated fungus Termitomyces. Current Biology, 2021, 31, 4413-4421.e5.	1.8	10
125	Microbial lignin degradation in an industrial composting environment. Bioresource Technology Reports, 2022, 17, 100911.	1.5	10
126	Uniting Tricholoma sulphureum and T. bufonium. Mycological Research, 2004, 108, 1162-1171.	2.5	9

#	Article	IF	CITATIONS
127	Earthworm activities in cassava and egusi melon fields in the transitional zone of Benin: linking farmers' perceptions with field studies. Njas - Wageningen Journal of Life Sciences, 2008, 56, 123-135.	7.9	9
128	Evaluation of integrated crop management strategies employed to cope withStrigainfestation in permanent land use systems in southern Benin. International Journal of Pest Management, 2008, 54, 197-206.	0.9	9
129	Host-parasite dynamics of Sorghum bicolor and Striga hermonthica – The influence of soil organic matter amendments of different C:N ratio. Crop Protection, 2011, 30, 1613-1622.	1.0	8
130	Revisiting land reform: land rights, access, and soil fertility management on the Adja Plateau in Benin. International Journal of Agricultural Sustainability, 2014, 12, 355-369.	1.3	8
131	An ITS phylogeny of Leccinum and an analysis of the evolution of minisatellite-like sequences within ITS1. Mycologia, 2004, 96, 102-18.	0.8	8
132	Tapping into nature's benefits: values, effort and the struggle to co-produce pine resin. Ecosystems and People, 2021, 17, 69-86.	1.3	7
133	Farm diversity and fine scales matter in the assessment of ecosystem services and land use scenarios. Agricultural Systems, 2022, 196, 103329.	3.2	7
134	Common mycorrhizal networks asymmetrically improve chickpea N and P acquisition and cause overyielding by a millet/chickpea mixture. Plant and Soil, 2022, 472, 279-293.	1.8	7
135	Enhancement of nitrification rates in vitro by interacting species of saprotrophic fungi. Mycological Research, 1995, 99, 1128-1130.	2.5	6
136	A framework proposal for sustainability assessment of sugarcane in Brazil. Land Use Policy, 2017, 68, 597-603.	2.5	6
137	Complementarity and facilitation with respect to P acquisition do not drive overyielding by intercropping. Field Crops Research, 2021, 265, 108127.	2.3	6
138	Sécurité foncière et gestion de la fertilité des solsÂ: études de cas au Ghana et au Bénin. Cahiers Agricultures, 2007, 16, 405-412.	0.4	6
139	Moderate swidden agriculture inside dense evergreen ombrophilous forests can sustain soil chemical properties over 10–15Âyear cycles within the Brazilian Atlantic Forest. Catena, 2021, 200, 105117.	2.2	5
140	A conceptual framework and an empirical test of complementarity and facilitation with respect to phosphorus uptake by plant species mixtures. Pedosphere, 2022, 32, 317-329.	2.1	5
141	Improving local technologies to manage speargrass (<i>Imperata cylindrica</i>) in southern Benin. International Journal of Pest Management, 2008, 54, 21-29.	0.9	4
142	Proteins unbound – how ectomycorrhizal fungi can tap a vast reservoir of mineralâ€associated organic nitrogen. New Phytologist, 2020, 228, 406-408.	3.5	4
143	Exploring Linkages between Supporting, Regulating, and Provisioning Ecosystem Services in Rangelands in a Tropical Agro-Forest Frontier. Land, 2020, 9, 511.	1.2	4
144	Corrigendum to "A framework proposal for sustainability assessment of sugarcane in Brazil―[Land Use Policy 68 (2017) 597–603]. Land Use Policy, 2017, , .	2.5	2

#	Article	IF	CITATIONS
145	Analyse d'une plate-forme d'innovation dans la filière karité au Mali. Cahiers Agricultures, 2017, 26, 45001.	0.4	2
146	Distribution of arbuscular mycorrhizal fungi in sugarcane rhizosphere from various agricultural management practices in Northeast, Thailand. Current Research in Environmental and Applied Mycology, 2022, 12, 44-55.	0.3	2
147	Book Review; R.L. Peterson, H.B. Massicotte and L.H. Melville. Mycorrhizas: Anatomy and Cell Biology, NRC Research Press, Ottawa/CABI Publishing, Wallingford, 2004. 173 pp. \$69.95. Mycopathologia, 2005, 159, 611-611.	1.3	1
148	Mycorrhizal phosphorus economies: a field test of the <scp>MANE</scp> framework. New Phytologist, 2016, 209, 894-895.	3.5	1
149	(1888) Proposal to conserve the name <i>Glomus</i> (<i>Fungi</i> , <i>Glomeromycota</i> ,) Tj ETQq1 1 0.7843	14 rgBT /C	overlock 10

150Networks of friends and foes and the fate of tree seedlings. New Phytologist, 2021, 230, 1688-1689.3.50