
Weizhao Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4261308/publications.pdf Version: 2024-02-01

<u>Μ/ειζηλο Ηυ</u>

#	Article	IF	CITATIONS
1	Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. Journal of Materials Chemistry A, 2015, 3, 8034-8044.	10.3	371
2	Construction of multifunctional boron nitride nanosheet towards reducing toxic volatiles (CO and) Tj ETQq0 0 0 362, 482-494.	rgBT /Ove 12.4	erlock 10 Tf 5 279
3	Airâ€Stable Polyphosphazeneâ€Functionalized Few‣ayer Black Phosphorene for Flame Retardancy of Epoxy Resins. Small, 2019, 15, e1805175.	10.0	209
4	Construction of multifunctional MoSe2 hybrid towards the simultaneous improvements in fire safety and mechanical property of polymer. Journal of Hazardous Materials, 2018, 352, 36-46.	12.4	177
5	A novel strategy to simultaneously electrochemically prepare and functionalize graphene with a multifunctional flame retardant. Chemical Engineering Journal, 2017, 316, 514-524.	12.7	165
6	Preparation of Metal–Organic Frameworks and Their Application as Flame Retardants for Polystyrene. Industrial & Engineering Chemistry Research, 2017, 56, 2036-2045.	3.7	135
7	The influence of zinc hydroxystannate on reducing toxic gases (CO, NO x and HCN) generation and fire hazards of thermoplastic polyurethane composites. Journal of Hazardous Materials, 2016, 314, 260-269.	12.4	113
8	Renewable vanillin-based flame retardant toughening agent with ultra-low phosphorus loading for the fabrication of high-performance epoxy thermoset. Composites Part B: Engineering, 2020, 190, 107925.	12.0	113
9	Natural antioxidant functionalization for fabricating ambient-stable black phosphorus nanosheets toward enhancing flame retardancy and toxic gases suppression of polyurethane. Journal of Hazardous Materials, 2020, 387, 121971.	12.4	106
10	A novel Co(Ⅱ)–based metal-organic framework with phosphorus-containing structure: Build for enhancing fire safety of epoxy. Composites Science and Technology, 2017, 152, 231-242.	7.8	100
11	Recent advances for microencapsulation of flame retardant. Polymer Degradation and Stability, 2015, 113, 96-109.	5.8	97
12	Functionalizing Ti3C2Tx for enhancing fire resistance and reducing toxic gases of flexible polyurethane foam composites with reinforced mechanical properties. Journal of Colloid and Interface Science, 2022, 607, 1300-1312.	9.4	97
13	Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin. Materials Chemistry and Physics, 2018, 214, 154-164.	4.0	96
14	Construction of graphite oxide modified black phosphorus through covalent linkage: An efficient strategy for smoke toxicity and fire hazard suppression of epoxy resin. Journal of Hazardous Materials, 2020, 399, 123015.	12.4	91
15	Hierarchical core–shell TiO2@LDH@Ni(OH)2 architecture with regularly-oriented nanocatalyst shells: Towards improving the mechanical performance, flame retardancy and toxic smoke suppression of unsaturated polyester resin. Chemical Engineering Journal, 2021, 405, 126650.	12.7	90
16	Facile Synthesis of a Highly Efficient, Halogen-Free, and Intumescent Flame Retardant for Epoxy Resins: Thermal Properties, Combustion Behaviors, and Flame-Retardant Mechanisms. Industrial & Engineering Chemistry Research, 2016, 55, 10868-10879.	3.7	86
17	Vertically Aligned Nickel 2-Methylimidazole Metal–Organic Framework Fabricated from Graphene Oxides for Enhancing Fire Safety of Polystyrene. Industrial & Engineering Chemistry Research, 2017, 56, 8778-8786.	3.7	81
18	Construction of Bimetallic ZIF-Derived Co–Ni LDHs on the Surfaces of GO or CNTs with a Recyclable Method: Toward Reduced Toxicity of Gaseous Thermal Decomposition Products of Unsaturated Polyester Resin. ACS Applied Materials & Interfaces, 2018, 10, 18359-18371.	8.0	78

WEIZHAO HU

#	Article	IF	CITATIONS
19	A review on metal-organic hybrids as flame retardants for enhancing fire safety of polymer composites. Composites Part B: Engineering, 2021, 221, 109014.	12.0	78
20	The combustion and pyrolysis process of flame-retardant polystyrene/cobalt-based metal organic frameworks (MOF) nanocomposite. Combustion and Flame, 2021, 226, 108-116.	5.2	76
21	Synthesis of a novel liquid phosphorus-containing flame retardant for flexible polyurethane foam: Combustion behaviors and thermal properties. Polymer Degradation and Stability, 2020, 171, 109029.	5.8	74
22	Highly-efficient reinforcement and flame retardancy of rigid polyurethane foam with phosphorus-containing additive and nitrogen-containing compound. Materials Chemistry and Physics, 2018, 211, 42-53.	4.0	71
23	Hierarchical Structure: An effective Strategy to Enhance the Mechanical Performance and Fire Safety of Unsaturated Polyester Resin. ACS Applied Materials & Interfaces, 2019, 11, 29436-29447.	8.0	66
24	Novel glycerol-based polymerized flame retardants with combined phosphorus structures for preparation of high performance unsaturated polyester resin composites. Composites Part B: Engineering, 2022, 233, 109647.	12.0	62
25	Facile Construction of Flame-Retardant-Wrapped Molybdenum Disulfide Nanosheets for Properties Enhancement of Thermoplastic Polyurethane. Industrial & Engineering Chemistry Research, 2017, 56, 7229-7238.	3.7	61
26	The improvement of fire safety performance of flexible polyurethane foam by Highly-efficient P-N-S elemental hybrid synergistic flame retardant. Journal of Colloid and Interface Science, 2022, 606, 768-783.	9.4	59
27	Facile synthesis of a novel hyperbranched poly(urethane-phosphine oxide) as an effective modifier for epoxy resin. Polymer Degradation and Stability, 2018, 154, 157-169.	5.8	58
28	Interfacial flame retardant unsaturated polyester composites with simultaneously improved fire safety and mechanical properties. Chemical Engineering Journal, 2021, 426, 131313.	12.7	54
29	A novel phosphorous-containing polymeric compatibilizer: Effective reinforcement and flame retardancy in glass fiber reinforced polyamide 6 composites. Composites Part B: Engineering, 2021, 205, 108536.	12.0	53
30	A facile strategy to simultaneously improve the mechanical and fire safety properties of ramie fabric-reinforced unsaturated polyester resin composites. Composites Part A: Applied Science and Manufacturing, 2018, 115, 264-273.	7.6	51
31	Highly efficient catalysts for reducing toxic gases generation change with temperature of rigid polyurethane foam nanocomposites: A comparative investigation. Composites Part A: Applied Science and Manufacturing, 2018, 112, 142-154.	7.6	47
32	Effect of cuprous oxide with different sizes on thermal and combustion behaviors of unsaturated polyester resin. Journal of Hazardous Materials, 2017, 334, 39-48.	12.4	45
33	Construction of Hierarchical Natural Fabric Surface Structure Based on Two-Dimensional Boron Nitride Nanosheets and Its Application for Preparing Biobased Toughened Unsaturated Polyester Resin Composites. ACS Applied Materials & Interfaces, 2018, 10, 40168-40179.	8.0	43
34	Atherton–Todd reaction assisted synthesis of functionalized multicomponent MoSe2/CNTs nanoarchitecture towards the fire safety enhancement of polymer. Composites Part A: Applied Science and Manufacturing, 2018, 112, 271-282.	7.6	42
35	Metal-organic framework@polyaniline nanoarchitecture for improved fire safety and mechanical performance of epoxy resin. Materials Chemistry and Physics, 2020, 247, 122875.	4.0	41
36	The influence of carbon-encapsulated transition metal oxide microparticles on reducing toxic gases release and smoke suppression of rigid polyurethane foam composites. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105815.	7.6	40

Weizhao Hu

#	Article	IF	CITATIONS
37	Effects of novel phosphorus-nitrogen-containing DOPO derivative salts on mechanical properties, thermal stability and flame retardancy of flexible polyurethane foam. Polymer Degradation and Stability, 2020, 177, 109160.	5.8	40
38	Nanosized bimetal-organic frameworks as robust coating for multi-functional flexible polyurethane foam: Rapid oil-absorption and excellent fire safety. Composites Science and Technology, 2019, 177, 66-72.	7.8	39
39	Exploration on structural rules of highly efficient flame retardant unsaturated polyester resins. Journal of Colloid and Interface Science, 2022, 608, 142-157.	9.4	39
40	Scalable one-step synthesis of hydroxylated boron nitride nanosheets for obtaining multifunctional polyvinyl alcohol nanocomposite films: Multi-azimuth properties improvement. Composites Science and Technology, 2018, 168, 74-80.	7.8	32
41	Bi2Se3 decorated recyclable liquid-exfoliated MoS2 nanosheets: Towards suppress smoke emission and improve mechanical properties of epoxy resin. Journal of Hazardous Materials, 2019, 364, 720-732.	12.4	29
42	Halogen and halogen-free flame retarded biologically-based polyamide with markedly suppressed smoke and toxic gases releases. Composites Part B: Engineering, 2020, 184, 107737.	12.0	28
43	Rationally designed functionalized black phosphorus nanosheets as new fire hazard suppression material for polylactic acid. Polymer Degradation and Stability, 2020, 178, 109194.	5.8	28
44	Construction of hierarchical layered double hydroxide/poly(dimethylsiloxane) composite coatings on ramie fabric surfaces for oil/water separation and flame retardancy. Cellulose, 2020, 27, 3485-3499.	4.9	27
45	High-performance flexible polyurethane foam based on hierarchical BN@MOF-LDH@APTES structure: Enhanced adsorption, mechanical and fire safety properties. Journal of Colloid and Interface Science, 2022, 609, 794-806.	9.4	23
46	Which part of metal-organic frameworks affects polymers' heat release, smoke emission and CO production behaviors more significantly, metallic component or organic ligand?. Composites Part B: Engineering, 2021, 223, 109131.	12.0	22
47	Design of copper salt@graphene nanohybrids to accomplish excellent resilience and superior fire safety for flexible polyurethane foam. Journal of Colloid and Interface Science, 2022, 606, 1205-1218.	9.4	20
48	Synthesis of Ethyl (Diethoxymethyl)phosphinate Derivatives and Their Flame Retardancy in Flexible Polyurethane Foam: Structure-flame Retardancy Relationships. Polymer Degradation and Stability, 2021, 188, 109557.	5.8	19
49	MOF-derived 3D petal-like CoNi-LDH array cooperates with MXene to effectively inhibit fire and toxic smoke hazards of FPUF. Chemosphere, 2022, 297, 134134.	8.2	19
50	Fabrication of flexible polyurethane/phosphorus interpenetrating polymer network (IPN) foam for enhanced thermal stability, flame retardancy and mechanical properties. Polymer Degradation and Stability, 2021, 189, 109602.	5.8	18
51	Construction of bismaleimide resin with enhanced flame retardancy and mechanical properties based on a novel DOPO-derived bismaleimide monomer. Journal of Colloid and Interface Science, 2022, 614, 629-641.	9.4	18
52	Bi 2 Se 3 nanosheets: Advanced nanofillers for reinforcing and flame retarding polyethylene nanocomposites. Composites Part A: Applied Science and Manufacturing, 2017, 100, 371-380.	7.6	16
53	Exploring the effects of cardanol-based co-curing agents with different phosphorus structures on the mechanical and flame-retardant properties of bismaleimide resin. Composites Part B: Engineering, 2022, 241, 110047.	12.0	15
54	The effect of triphenyl phosphate inhibition on flame propagation over cast PMMA slabs. Proceedings of the Combustion Institute, 2021, 38, 4635-4644.	3.9	11

WEIZHAO HU

#	Article	IF	CITATIONS
55	Poly(dimethyl siloxane)-grafted black phosphorus nanosheets as filler to enhance moisture-resistance and flame-retardancy of thermoplastic polyurethane. Materials Chemistry and Physics, 2022, 286, 126189.	4.0	11
56	Applications of GO/OAâ€POSS Layerâ€by‣ayer selfâ€assembly nanocoating on flame retardancy and smoke suppression of flexible polyurethane foam. Polymers for Advanced Technologies, 2021, 32, 4516-4530.	3.2	10
57	Rapid Synthesis of Oxygen-Rich Covalent C ₂ N (CNO) Nanosheets by Sacrifice of HKUST-1: Advanced Metal-Free Nanofillers for Polymers. ACS Applied Materials & Interfaces, 2018, 10, 32688-32697.	8.0	9
58	Preparation of soybean root-like CNTs/bimetallic oxides hybrid to enhance fire safety and mechanical performance of thermoplastic polyurethane. Chemical Engineering Journal, 2022, 428, 132338.	12.7	9
59	Magnetic Fe ₃ O ₄ Nanoparticle/ZIF-8 Composites for Contaminant Removal from Water and Enhanced Flame Retardancy of Flexible Polyurethane Foams. ACS Applied Nano Materials, 2022, 5, 3491-3501.	5.0	9
60	High-performance flexible polyurethane from renewable castor oil: Preparation, properties and mechanism. Composites Part A: Applied Science and Manufacturing, 2022, 159, 107034.	7.6	8
61	An insight into pyrolysis and flame retardant mechanism of unsaturated polyester resin with different valance states of phosphorus structures. Polymer Degradation and Stability, 2022, 202, 110026.	5.8	5
62	Mechanical, Thermal, and Flame-Retardant Behaviors of Thermoplastic Polyether–Ester Elastomer Composites with Polyphenylene Oxide and Aluminum Hypophosphite. Polymer-Plastics Technology and Engineering, 2017, 56, 1096-1107.	1.9	3