Shunying Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4260493/publications.pdf

Version: 2024-02-01

257450 302126 1,706 65 24 39 citations h-index g-index papers 80 80 80 1898 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel 2-phenyl-3-(Pyridin-2-yl) thiazolidin-4-one derivatives as potent inhibitors for proliferation of osteosarcoma cells inÂvitro and inÂvivo. European Journal of Medicinal Chemistry, 2022, 228, 114010.	5.5	2
2	One-pot synthesis of multi-substituted conjugated dienones by trapping allene carbocations with active ylides. Chemical Communications, 2022, , .	4.1	2
3	Facile synthesis of N2-substituted-1,2,3-triazole from aryl ethynylene and azide via a one-pot two-step strategy. Tetrahedron, 2022, 108, 132670.	1.9	3
4	Base-Induced Highly Regioselective Synthesis of <i>N</i> ² -Substituted 1,2,3-Triazoles under Mild Conditions in Air. Organic Letters, 2022, 24, 132-136.	4.6	7
5	Dual Functional Pd-Catalyzed Multicomponent Reaction by Umpolung Chemistry of the Oxygen Atom in Electrophiles. Journal of Organic Chemistry, 2021, 86, 6847-6854.	3.2	5
6	FeTPPCI/FeCI ₃ Co-Catalyzed One-Pot Green Synthesis of α-Diaryl-β-alkynol Derivatives via Propargylic Carbocation Chemistry. Journal of Organic Chemistry, 2021, 86, 9306-9316.	3.2	5
7	C(sp2)–H Bond Multiple Functionalization in Air for Construction of Tetrahydrocarbazoles with Continuous Quaternary Carbons and Polycyclic Diversification. Organic Letters, 2020, 22, 1846-1851.	4.6	23
8	Highly Regioselective Radical Transformation of <i>N</i> Sulfonyl-1,2,3-triazoles in Air. Organic Letters, 2019, 21, 6413-6417.	4.6	23
9	Aromatic C–H Bond Functionalized via Zwitterion Intermediates to Construct Bioxindole Containing Continuous Quaternary Carbons. Journal of Organic Chemistry, 2019, 84, 15192-15200.	3.2	11
10	Optimization of P2Y ₁₂ Antagonist Ethyl 6-(4-((Benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283) Led to the Discovery of an Oral Antiplatelet Agent with Improved Druglike Properties. Journal of Medicinal Chemistry, 2019, 62, 3088-3106.	6.4	22
11	Rh(I)/Sc(OTf)3-co-catalyzed Michael addition of ammonium ylide to (E)-1,4-enediones: synthesis of functionalized 1,4-diketones. Molecular Diversity, 2019, 23, 997-1010.	3.9	7
12	Formal carbene insertion into C O double bond: A facile approach to the synthesis of 2H-chromenes. Tetrahedron, 2018, 74, 4551-4557.	1.9	7
13	A triple-functionalised metal centre-catalyzed enantioselective multicomponent reaction. Organic Chemistry Frontiers, 2018, 5, 2799-2804.	4.5	11
14	A Diastereoselective Multicomponent Reaction for Construction of Alkynylamide-Substituted $\hat{l}\pm,\hat{l}^2$ -Diamino Acid Derivatives To Hunt Hits. Journal of Organic Chemistry, 2017, 82, 2862-2869.	3.2	12
15	A Rh(II)-catalyzed multicomponent reaction by trapping an \hat{l}_{\pm} -amino enol intermediate in a traditional two-component reaction pathway. Science Advances, 2017, 3, e1602467.	10.3	42
16	Enantioselective Formal $[3+1+1]$ Cycloaddition Reaction by Ru(II)/Iminium Cocatalysis for Construction of Multisubstituted Pyrrolidines. Organic Letters, 2017, 19, 1290-1293.	4.6	14
17	Enantioselective Multicomponent Reaction for Rapid Construction of 1,2,5-Triol Derivatives with Vicinal Chiral Centers. Journal of Organic Chemistry, 2017, 82, 5212-5221.	3.2	13
18	A DFT calculation-inspired Rh($\langle scp \rangle i \langle scp \rangle$)-catalyzed reaction via suppression of \hat{l}_{\pm} -H shift in \hat{l}_{\pm} -alkyldiazoacetates. Chemical Science, 2017, 8, 4312-4317.	7.4	28

#	Article	IF	CITATIONS
19	Discovery of core-structurally novel PTP1B inhibitors with specific selectivity containing oxindole-fused spirotetrahydrofurochroman by one-pot reaction. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1105-1108.	2.2	12
20	A transformation of cyclopropyl carbene: a highly enantioselective three-component reaction via trapping oxonium ylide by imine. Tetrahedron, 2016, 72, 2929-2934.	1.9	9
21	Enantioselective oxidative functionalization of the C _{sp3} â€"H bond adjacent to a nitrogen atom for rapid access to β-hydroxyl-α-amino acid derivatives. Chemical Communications, 2016, 52, 11831-11833.	4.1	18
22	Diastereoselective Three omponent Cascade Reaction to Construct Oxindoleâ€Fused SpirotetrahydroÂfurochroman Scaffolds for Drug Discovery. European Journal of Organic Chemistry, 2016, 2016, 2671-2680.	2.4	23
23	An enantioselective three-component reaction of diazoacetates with indoles and enals by iridium/iminium co-catalysis. Chemical Communications, 2016, 52, 2736-2739.	4.1	42
24	One-pot Enantioselective Multi-component Cascade Reactions for Synthesis of Chiral Functionalized Hydro-epoxyisochromenes: A Rapid Access toMolecular Complexity. Acta Chimica Sinica, 2016, 74, 54.	1.4	15
25	An Ylide Transformation of Rhodium(I) Carbene: Enantioselective Threeâ€Component Reaction through Trapping of Rhodium(I)â€Associated Ammonium Ylides by βâ€Nitroacrylates. Angewandte Chemie - International Edition, 2014, 53, 13136-13139.	13.8	90
26	Ruthenium(II)/Chiral BrÃ,nsted Acid Co atalyzed Enantioselective Fourâ€Component Reaction/Cascade Azaâ€Michael Addition for Efficient Construction of 1,3,4â€Tetrasubstituted Tetrahydroisoquinolines. Chemistry - A European Journal, 2014, 20, 1505-1509.	3.3	43
27	Efficient synthesis of chiral cyclic acetals by metal and $Br ilde{A}_i$ nsted acid co-catalyzed enantioselective four-component cascade reactions. Chemical Communications, 2014, 50, 2196-2198.	4.1	27
28	â€~Smart' gold nanoshells for combined cancer chemotherapy and hyperthermia. Biomedical Materials (Bristol), 2014, 9, 025012.	3.3	37
29	Three-component reactions based on trapping ammonium ylides with N-sulfonyl aldimines via cooperative catalysis of squaramides and Rh2(OAc)4. Tetrahedron, 2014, 70, 1471-1477.	1.9	10
30	Regio- and Diastereoselective Construction of \hat{l} ±-Hydroxy- \hat{l} -amino Ester Derivatives via 1,4-Conjugate Addition of \hat{l}^2 , \hat{l}^3 -Unsaturated <i>N</i> -Sulfonylimines. Journal of Organic Chemistry, 2014, 79, 4142-4147.	3.2	17
31	Asymmetric N—H Insertion Reaction of <i>α</i> →Diazoesters and Carbamates Co-catalyzed by Dirhodium Acetate, Sufonic Acid and Chiral Sulfonamide Urea. Chinese Journal of Organic Chemistry, 2014, 34, 107.	1.3	8
32	Enantioselective trapping of phosphoramidate ammonium ylides with imino esters for synthesis of 2,3-diaminosuccinic acid derivatives. Chemical Communications, 2013, 49, 4238.	4.1	52
33	Recent Advances in the Use of Chiral BrÃ, nsted Acids as Cooperative Catalysts in Cascade and Multicomponent Reactions. Asian Journal of Organic Chemistry, 2013, 2, 824-836.	2.7	65
34	Efficient synthesis of \hat{l} ±-aryl serine derivatives via three-component reactions of aryldiazoacetates, anilines and formaldehyde. Tetrahedron, 2013, 69, 11203-11208.	1.9	16
35	A series of new star-shaped or branched platinum–acetylide derivatives: synthesis, characterization, and their aggregation behavior. Chemical Communications, 2013, 49, 6977.	4.1	33
36	A stereoselective synthesis of fully substituted tetrahydrofurans through 1,3-dipolar cycloaddition with cinnamaldehydes: an easy access to chroman derivatives. RSC Advances, 2013, 3, 20065.	3.6	7

#	Article	IF	Citations
37	Highly Diastereoselective Multicomponent Cascade Reactions: Efficient Synthesis of Functionalized 1â€Indanols. Angewandte Chemie - International Edition, 2013, 52, 1539-1542.	13.8	41
38	Poly(ethylene glycol) shell-sheddable nanomicelle prodrug of camptothecin with enhanced cellular uptake. Colloids and Surfaces B: Biointerfaces, 2013, 105, 294-302.	5.0	17
39	Poly(ethylene glycol) shell-sheddable magnetic nanomicelle as the carrier of doxorubicin with enhanced cellular uptake. Colloids and Surfaces B: Biointerfaces, 2013, 107, 213-219.	5.0	19
40	A highly enantioselective four-component reaction for the efficient construction of chiral \hat{l}^2 -hydroxy- $\hat{l}\pm$ -amino acid derivatives. Chemical Communications, 2013, 49, 2700.	4.1	39
41	Iron Porphyrin-Catalyzed Three-Component Reaction of Ethyl Diazoacetate with Aliphatic Amines and \hat{l}^2 , \hat{l}^3 -Unsaturated \hat{l}_2 -Keto Esters. Organic Letters, 2013, 15, 6140-6143.	4.6	49
42	A Facile Approach to Fabricate Waterâ€soluble Auâ€Fe ₃ O ₄ Nanoparticle for Liver Cancer Cells Imaging. Chinese Journal of Chemistry, 2012, 30, 1387-1392.	4.9	18
43	Asymmetric C—H Functionalization of Indoles via Enantioselective Protonation. Acta Chimica Sinica, 2012, 70, 2484.	1.4	43
44	The effect of pH value on the formation of gold nanoshells. Journal of Nanoparticle Research, 2011, 13, 3301-3311.	1.9	17
45	Enhanced Sensitivity and Selectivity of Chemosensor for Malonate by Anchoring on Gold Nanoparticles. Chinese Journal of Chemistry, 2011, 29, 531-538.	4.9	5
46	Surfaceâ€modified gold nanoshells for enhanced cellular uptake. Journal of Biomedical Materials Research - Part A, 2011, 98A, 479-487.	4.0	18
47	Fabrication of nanomicelle with enhanced solubility and stability of camptothecin based on $\hat{l}\pm,\hat{l}^2$ -poly[(N-carboxybutyl)-l-aspartamide] $\hat{a}\in\hat{l}$ (camptothecin conjugate. Colloids and Surfaces B: Biointerfaces, 2010, 75, 543-549.	5.0	26
48	In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells. Journal of Materials Science: Materials in Medicine, 2010, 21, 665-674.	3.6	78
49	A Facile Approach to the Synthesis of Gold Nanoshells with Near Infrared Responsive Properties. Chinese Journal of Chemistry, 2009, 27, 1079-1085.	4.9	11
50	Stability and activity of chymotrypsin immobilized on magnetic nanogels covered with carboxyl groups. Journal of Applied Polymer Science, 2009, 111, 2844-2850.	2.6	5
51	Fabrication of polymer–platinum(II) complex nanomicelle from mPEG–g-α,β-poly [(N-amino) Tj ETQq1 1 0.7 Surfaces B: Biointerfaces, 2009, 70, 84-90.	784314 rgE 5.0	BT /Overlock 15
52	Preparation and characterization of amino-functionalized magnetic nanogels via photopolymerization for MRI applications. Colloids and Surfaces B: Biointerfaces, 2009, 71, 243-247.	5.0	25
53	Synthesis and Enantioselective Discrimination of Chiral Fluorescence Receptors Bearing Amino Acid Units. Chinese Journal of Chemistry, 2007, 25, 390-394.	4.9	5
54	Cholic acid-based high sensitivity fluorescent sensor for \hat{l}_{\pm} , \hat{l}_{\pm} %-dicarboxylate: an intramolecular excimer emission quenched by complexation. Tetrahedron, 2006, 62, 11687-11696.	1.9	42

Shunying Liu

#	Article	IF	CITATION
55	Fluorescent enantioselective receptor for S-mandelate anion based on cholic acid. Tetrahedron Letters, 2006, 47, 7857-7860.	1.4	28
56	Calix[4]arene-Based Chromogenic Chemosensor for the α-Phenylglycine Anion: Synthesis and Chiral Recognition. European Journal of Organic Chemistry, 2006, 2006, 1574-1580.	2.4	53
57	Two Multi-armed Neutral Receptors forl±,ï‰-Dicarboxylate Anions. Chinese Journal of Chemistry, 2006, 24, 527-532.	4.9	1
58	Fluorescent sensors for amino acid anions based on calix[4]arenes bearing two dansyl groups. Tetrahedron: Asymmetry, 2005, 16, 1527-1534.	1.8	54
59	Cholic-Acid-Based Fluorescent Sensor for Dicarboxylates and Acidic Amino Acids in Aqueous Solutions. Organic Letters, 2005, 7, 5825-5828.	4.6	122
60	Synthesis and chiral recognition of novel chiral fluorescence receptors bearing 9-anthryl moieties. Tetrahedron: Asymmetry, 2005, 16, 833-839.	1.8	35
61	Enantioselective recognition by optically active chiral fluorescence sensors bearing amino acid units. Tetrahedron: Asymmetry, 2005, 16, 3042-3048.	1.8	29
62	Anionic Fluororeceptors based on Thiourea and Hydrazide: Synthesis and Recognition Properties. Supramolecular Chemistry, 2004, 16, 353-359.	1.2	18
63	Synthesis and anion recognition of neutral receptors based on multiamide calix[4]arene. Science in China Series B: Chemistry, 2004, 47, 145.	0.8	7
64	A Multi-armed Neutral Receptor for \hat{l}_{\pm} , \hat{l}_{∞} -Dicarboxylate Anions. Supramolecular Chemistry, 2004, 16, 233-238.	1.2	10
65	Calix[4]arenes containing thiourea and amide moieties: neutral receptors towards α,ï‰-dicarboxylate anions. Organic and Biomolecular Chemistry, 2004, 2, 1582-1586.	2.8	79