
Arthur V Cresce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4260421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ammonium enables reversible aqueous Zn battery chemistries by tailoring the interphase. One Earth, 2022, 5, 413-421.	6.8	10
2	Functionalized Phosphonium Cations Enable Zinc Metal Reversibility in Aqueous Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 12438-12445.	13.8	69
3	Aqueous lithiumâ€ion batteries. , 2021, 3, 721-751.		95
4	Gel electrolyte for a 4V flexible aqueous lithium-ion battery. Journal of Power Sources, 2020, 469, 228378.	7.8	20
5	Enabling high performance all-solid-state lithium metal batteries using solid polymer electrolytes plasticized with ionic liquid. Electrochimica Acta, 2020, 345, 136156.	5.2	42
6	Interfacially Induced Cascading Failure in Graphite‣ilicon Composite Anodes. Advanced Science, 2019, 6, 1801007.	11.2	66
7	Insight on lithium metal anode interphasial chemistry: Reduction mechanism of cyclic ether solvent and SEI film formation. Energy Storage Materials, 2019, 17, 366-373.	18.0	97
8	Deciphering the Ethylene Carbonate–Propylene Carbonate Mystery in Li-Ion Batteries. Accounts of Chemical Research, 2018, 51, 282-289.	15.6	243
9	An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nature Chemistry, 2018, 10, 532-539.	13.6	347
10	Spray-Processed Composites with High Conductivity and Elasticity. ACS Applied Materials & Interfaces, 2018, 10, 13953-13962.	8.0	10
11	Correlating Li ⁺ -Solvation Structure and its Electrochemical Reaction Kinetics with Sulfur in Subnano Confinement. Journal of Physical Chemistry Letters, 2018, 9, 1739-1745.	4.6	26
12	Confined Lithium–Sulfur Reactions in Narrow-Diameter Carbon Nanotubes Reveal Enhanced Electrochemical Reactivity. ACS Nano, 2018, 12, 9775-9784.	14.6	61
13	Multinuclear magnetic resonance investigation of cation-anion and anion-solvent interactions in carbonate electrolytes. Journal of Power Sources, 2018, 399, 215-222.	7.8	19
14	Solvation behavior of carbonate-based electrolytes in sodium ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 574-586.	2.8	152
15	Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes. ACS Nano, 2017, 11, 10462-10471.	14.6	283
16	"Waterâ€inâ€Salt―Electrolyte Makes Aqueous Sodiumâ€ion Battery Safe, Green, and Longâ€Lasting. Advanc Energy Materials, 2017, 7, 1701189.	ced 19.5	487
17	Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure. Accounts of Chemical Research, 2017, 50, 2886-2894.	15.6	234
18	Ion Solvation and the Search for a Correlation with Electrode Passivation. Materials Research Society Symposia Proceedings, 2015, 1740, 49.	0.1	0

ARTHUR V CRESCE

#	Article	IF	CITATIONS
19	Anion Solvation in Carbonate-Based Electrolytes. Journal of Physical Chemistry C, 2015, 119, 27255-27264.	3.1	121
20	Atomic Force Microscopy Studies on Molybdenum Disulfide Flakes as Sodium-Ion Anodes. Nano Letters, 2015, 15, 1018-1024.	9.1	113
21	The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes. ACS Applied Materials & Interfaces, 2015, 7, 20687-20695.	8.0	41
22	Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Nano Letters, 2014, 14, 6889-6896.	9.1	326
23	Dual-graphite chemistry enabled by a high voltage electrolyte. Energy and Environmental Science, 2014, 7, 617-620.	30.8	312
24	In Situ and Quantitative Characterization of Solid Electrolyte Interphases. Nano Letters, 2014, 14, 1405-1412.	9.1	237
25	Free-Standing Na _{2/3} Fe _{1/2} Mn _{1/2} O ₂ @Graphene Film for a Sodium-Ion Battery Cathode. ACS Applied Materials & Interfaces, 2014, 6, 4242-4247.	8.0	88
26	Understanding Li ⁺ –Solvent Interaction in Nonaqueous Carbonate Electrolytes with ¹⁷ 0 NMR. Journal of Physical Chemistry Letters, 2013, 4, 1664-1668.	4.6	268
27	Li ⁺ -Solvation Structure Directs Interphasial Processes on Graphitic Anodes. ECS Transactions, 2012, 41, 187-193.	0.5	6
28	Phosphate-Based Compounds as Additives for 5-Volt Lithium-Ion Electrolytes. ECS Transactions, 2012, 41, 17-22.	0.5	5
29	Li ⁺ -solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells. Journal of Materials Research, 2012, 27, 2327-2341.	2.6	165
30	Correlating Li ⁺ Solvation Sheath Structure with Interphasial Chemistry on Graphite. Journal of Physical Chemistry C, 2012, 116, 26111-26117.	3.1	166
31	Preferential Solvation of Li+ Directs Formation of Interphase on Graphitic Anode. Electrochemical and Solid-State Letters, 2011, 14, A154.	2.2	119
32	Interfacing electrolytes with electrodes in Li ion batteries. Journal of Materials Chemistry, 2011, 21, 9849.	6.7	327
33	Electrolyte Additive in Support of 5â€,V Li Ion Chemistry. Journal of the Electrochemical Society, 2011, 158, A337.	2.9	212
34	Differentiating Contributions to "Ion Transfer―Barrier from Interphasial Resistance and Li ⁺ Desolvation at Electrolyte/Graphite Interface. Langmuir, 2010, 26, 11538-11543.	3.5	438
35	Silk–elastinlike protein polymer hydrogels: Influence of monomer sequence on physicochemical properties. Polymer, 2009, 50, 366-374.	3.8	69
36	Block copolymer nanotemplating of tobacco mosaic and tobacco necrosis viruses. Acta Biomaterialia, 2009, 5, 893-902.	8.3	0

ARTHUR V CRESCE

#	Article	IF	CITATIONS
37	Characterization and Real-Time Imaging of Gene Expression of Adenovirus Embedded Silk-Elastinlike Protein Polymer Hydrogels. Molecular Pharmaceutics, 2008, 5, 891-897.	4.6	31
38	Nanopatterning of Recombinant Proteins Using Block Copolymer Templates. Macromolecules, 2006, 39, 5826-5829.	4.8	17
39	Polydispersity control in ring opening metathesis polymerization of amphiphilic norbornene diblock copolymers. Polymer, 2003, 44, 4943-4948.	3.8	24
40	Properties of self-assembled ZnO nanostructures. Solid-State Electronics, 2002, 46, 1639-1642.	1.4	40
41	Structural and ferromagnetic resonance characteristics of BaFe12O19 films with minimal linewidths. Applied Physics Letters, 2001, 79, 385-387.	3.3	16
42	Observation of nearly intrinsic ferromagnetic resonance linewidth in BaFe/sub 12/O/sub 19/ films deposited by pulsed laser deposition. IEEE Transactions on Magnetics, 2001, 37, 2377-2379.	2.1	4