Melvin E Andersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4260359/publications.pdf

Version: 2024-02-01

495 papers

26,854 citations

82 h-index 135 g-index

538 all docs

538 docs citations

538 times ranked

17005 citing authors

#	Article	IF	CITATIONS
1	Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of Toxicology, 2013, 87, 1315-1530.	1.9	1,089
2	Toxicity Testing in the 21st Century: A Vision and a Strategy. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2010, 13, 51-138.	2.9	724
3	A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicology and Applied Pharmacology, 1984, 73, 159-175.	1.3	659
4	Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicology and Applied Pharmacology, 1987, 87, 185-205.	1.3	589
5	Partition coefficients of low-molecular-weight volatile chemicals in various liquids and tissues. Toxicology and Applied Pharmacology, 1989, 98, 87-99.	1.3	489
6	Reactive Oxygen Species as a Signal in Glucose-Stimulated Insulin Secretion. Diabetes, 2007, 56, 1783-1791.	0.3	469
7	Inhaled carbon nanotubes reach the subpleural tissue in mice. Nature Nanotechnology, 2009, 4, 747-751.	15.6	411
8	Integration of Dosimetry, Exposure, and High-Throughput Screening Data in Chemical Toxicity Assessment. Toxicological Sciences, 2012, 125, 157-174.	1.4	336
9	Human exposure and internal dose assessments of acrylamide in food. Food and Chemical Toxicology, 2005, 43, 365-410.	1.8	332
10	Organotypic liver culture models: Meeting current challenges in toxicity testing. Critical Reviews in Toxicology, 2012, 42, 501-548.	1.9	293
11	ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicology and Applied Pharmacology, 2010, 244, 77-83.	1.3	291
12	Toxicity Testing in the 21st Century: Bringing the Vision to Life. Toxicological Sciences, 2009, 107, 324-330.	1.4	280
13	Incorporating New Technologies Into Toxicity Testing and Risk Assessment: Moving From 21st Century Vision to a Data-Driven Framework. Toxicological Sciences, 2013, 136, 4-18.	1.4	230
14	Incorporating Human Dosimetry and Exposure into High-Throughput <i>In Vitro</i> Toxicity Screening. Toxicological Sciences, 2010, 117, 348-358.	1.4	222
15	Toxicity testing in the 21st century: progress in the past decade and future perspectives. Archives of Toxicology, 2020, 94, 1-58.	1.9	209
16	A systems biology perspective on Nrf2-mediated antioxidant response. Toxicology and Applied Pharmacology, 2010, 244, 84-97.	1.3	197
17	A physiologically based simulation approach for determining metabolic constants from gas uptake data. Toxicology and Applied Pharmacology, 1986, 86, 341-352.	1.3	191
18	Quantitative <i>in vitro</i> to <i>in vivo</i> extrapolation of cell-based toxicity assay results. Critical Reviews in Toxicology, 2012, 42, 633-652.	1.9	190

#	Article	IF	Citations
19	Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted <i>In Vitro </i> Bioactivity to Inform Chemical Toxicity Testing. Toxicological Sciences, 2015, 148, 121-136.	1.4	190
20	A physiologically based toxicokinetic model for the uptake and disposition of waterborne organic chemicals in fish. Toxicology and Applied Pharmacology, 1990, 106, 433-447.	1.3	189
21	Development of a physiologically based pharmacokinetic model for chloroform. Toxicology and Applied Pharmacology, 1990, 103, 512-527.	1.3	178
22	Toxicity Testing in the 21st Century: Defining New Risk Assessment Approaches Based on Perturbation of Intracellular Toxicity Pathways. PLoS ONE, 2011, 6, e20887.	1.1	175
23	A Method to Integrate Benchmark Dose Estimates with Genomic Data to Assess the Functional Effects of Chemical Exposure. Toxicological Sciences, 2007, 98, 240-248.	1.4	174
24	Pharmacokinetic modeling of saturable, renal resorption of perfluoroalkylacids in monkeysâ€"Probing the determinants of long plasma half-lives. Toxicology, 2006, 227, 156-164.	2.0	171
25	The acute toxicity of perfluorooctanoic and perfluorodecanoic acids in male rats and effects on tissue fatty acids. Toxicology and Applied Pharmacology, 1983, 70, 362-372.	1.3	170
26	Metabolism of inhaled dihalomethanes in vivo: Differentiation of kinetic constants for two independent pathways. Toxicology and Applied Pharmacology, 1986, 82, 211-223.	1.3	168
27	Ultrasensitive response motifs: basic amplifiers in molecular signalling networks. Open Biology, 2013, 3, 130031.	1.5	165
28	Dose-dependent transitions in mechanisms of toxicity: case studies. Toxicology and Applied Pharmacology, 2004, 201, 226-294.	1.3	164
29	Temporal Concordance Between Apical and Transcriptional Points of Departure for Chemical Risk Assessment. Toxicological Sciences, 2013, 134, 180-194.	1.4	164
30	Associations of Perfluoroalkyl Substances (PFAS) with Lower Birth Weight: An Evaluation of Potential Confounding by Glomerular Filtration Rate Using a Physiologically Based Pharmacokinetic Model (PBPK). Environmental Health Perspectives, 2015, 123, 1317-1324.	2.8	164
31	Dose-dependent transitions in mechanisms of toxicity. Toxicology and Applied Pharmacology, 2004, 201, 203-225.	1.3	162
32	Toxicokinetic modeling and its applications in chemical risk assessment. Toxicology Letters, 2003, 138, 9-27.	0.4	156
33	Quantitative Interpretation of Human Biomonitoring Data. Toxicology and Applied Pharmacology, 2008, 231, 122-133.	1.3	143
34	Risk Assessment Extrapolations and Physiological Modeling. Toxicology and Industrial Health, 1985, 1, 111-134.	0.6	142
35	Modeling Receptor-Mediated Processes with Dioxin: Implications for Pharmacokinetics and Risk Assessment. Risk Analysis, 1993, 13, 25-36.	1.5	142
36	An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy. Free Radical Biology and Medicine, 2016, 99, 544-556.	1.3	142

#	Article	IF	CITATIONS
37	Adipose Deficiency of <i>Nrf2</i> in <i>ob/ob</i> Mice Results in Severe Metabolic Syndrome. Diabetes, 2013, 62, 845-854.	0.3	141
38	A physiologically based toxicokinetic description of the metabolism of inhaled gases and vapors: Analysis at steady state*1. Toxicology and Applied Pharmacology, 1981, 60, 509-526.	1.3	138
39	Physiologically based pharmacokinetic modeling with dichloromethane, its metabolite, carbon monoxide, and blood carboxyhemoglobin in rats and humans. Toxicology and Applied Pharmacology, 1991, 108, 14-27.	1.3	133
40	A Comprehensive Statistical Analysis of Predicting In Vivo Hazard Using High-Throughput In Vitro Screening. Toxicological Sciences, 2012, 128, 398-417.	1.4	133
41	Estimating the risk of liver cancer associated with human exposures to chloroform using physiologically based pharmacokinetic modeling. Toxicology and Applied Pharmacology, 1990, 105, 443-459.	1.3	131
42	GlutathioneS-Transferase-Mediated Mutagenicity of Trihalomethanes inSalmonella typhimurium:Contrasting Results with Bromodichloromethane and Chloroform. Toxicology and Applied Pharmacology, 1997, 144, 183-188.	1.3	126
43	Physiologically based pharmacokinetic modeling of the pregnant rat: A multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid. Toxicology and Applied Pharmacology, 1989, 99, 395-414.	1.3	123
44	Characterizing Uncertainty and Variability in Physiologically Based Pharmacokinetic Models: State of the Science and Needs for Research and Implementation. Toxicological Sciences, 2007, 99, 395-402.	1.4	122
45	Low-Level Arsenic Impairs Glucose-Stimulated Insulin Secretion in Pancreatic Beta Cells: Involvement of Cellular Adaptive Response to Oxidative Stress. Environmental Health Perspectives, 2010, 118, 864-870.	2.8	122
46	Determination of the kinetic constants for metabolism of inhaled toxicants in vivo using gas uptake measurements. Toxicology and Applied Pharmacology, 1980, 54, 100-116.	1.3	119
47	Nuclear factor erythroid-derived factor 2-related factor 2 regulates transcription of CCAAT/enhancer-binding protein \hat{l}^2 during adipogenesis. Free Radical Biology and Medicine, 2012, 52, 462-472.	1.3	119
48	Pharmacokinetic data needs to support risk assessments for inhaled and ingested manganese. NeuroToxicology, 1999, 20, 161-71.	1.4	119
49	Toxicity Testing in the 21st Century: Implications for Human Health Risk Assessment. Risk Analysis, 2009, 29, 474-479.	1.5	117
50	Dermal absorption of organic chemical vapors in rats and humans*1. Fundamental and Applied Toxicology, 1990, 14, 299-308.	1.9	116
51	A deterministic map of Waddington's epigenetic landscape for cell fate specification. BMC Systems Biology, 2011, 5, 85.	3.0	116
52	Application of Transcriptional Benchmark Dose Values in Quantitative Cancer and Noncancer Risk Assessment. Toxicological Sciences, 2011, 120, 194-205.	1.4	116
53	Development of Pbpk Models for Pfoa and Pfos for Human Pregnancy and Lactation Life Stages. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2013, 76, 25-57.	1.1	116
54	Formaldehyde: Integrating Dosimetry, Cytotoxicity, and Genomics to Understand Dose-Dependent Transitions for an Endogenous Compound. Toxicological Sciences, 2010, 118, 716-731.	1.4	114

#	Article	IF	CITATIONS
55	Implementing Toxicity Testing in the 21st Century (TT21C): Making safety decisions using toxicity pathways, and progress in a prototype risk assessment. Toxicology, 2015, 332, 102-111.	2.0	114
56	Linear low-dose extrapolation for noncancer health effects is the exception, not the rule. Critical Reviews in Toxicology, 2011, 41, 1-19.	1.9	108
57	Comparison of cancer risk estimates for vinyl chloride using animal and human data with a PBPK model. Science of the Total Environment, 2001, 274, 37-66.	3.9	106
58	Quantitative evaluation of the metabolic interactions between trichloroethylene and 1,1-dichloroethylene in vivo using gas uptake methods. Toxicology and Applied Pharmacology, 1987, 89, 149-157.	1.3	104
59	A physiological pharmacokinetic description of the tissue distribution and enzyme-inducing properties of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat. Toxicology and Applied Pharmacology, 1990, 103, 399-410.	1.3	104
60	Relative Impact of Incorporating Pharmacokinetics on Predicting In Vivo Hazard and Mode of Action from High-Throughput In Vitro Toxicity Assays. Toxicological Sciences, 2013, 132, 327-346.	1.4	104
61	The Dissociation of the First Oxygen Molecule from Some Mammalian Oxyhemoglobins. Journal of Biological Chemistry, 1971, 246, 5919-5923.	1.6	103
62	Physiologically based pharmacokinetic and pharmacodynamic model for the inhibition of acetylcholinesterase by diisopropyfluorophosphate. Toxicology and Applied Pharmacology, 1990, 106, 295-310.	1.3	101
63	Physiologically Based Pharmacokinetic Modeling of Fetal and Neonatal Manganese Exposure in Humans: Describing Manganese Homeostasis during Development. Toxicological Sciences, 2011, 122, 297-316.	1.4	99
64	Evaluation and prediction of pharmacokinetics of PFOA and PFOS in the monkey and human using a PBPK model. Regulatory Toxicology and Pharmacology, 2011, 59, 157-175.	1.3	99
65	A Framework for the Next Generation of Risk Science. Environmental Health Perspectives, 2014, 122, 796-805.	2.8	97
66	Regional Hepatic CYP1A1 and CYP1A2 Induction with 2,3,7,8-Tetrachlorodibenzo-p-dioxin Evaluated with a Multicompartment Geometric Model of Hepatic Zonation. Toxicology and Applied Pharmacology, 1997, 144, 145-155.	1.3	96
67	Use of physiologically based pharmacokinetic modeling to investigate individual versus population risk. Toxicology, 1996, 111, 315-329.	2.0	95
68	A physiologically based pharmacokinetic model for inhaled carbon tetrachloride. Toxicology and Applied Pharmacology, 1988, 96, 191-211.	1.3	94
69	New Directions in Toxicity Testing. Annual Review of Public Health, 2011, 32, 161-178.	7.6	93
70	In vitro to in vivo extrapolation and species response comparisons for drug-induced liver injury (DILI) using DILIsymâ,,¢: a mechanistic, mathematical model of DILI. Journal of Pharmacokinetics and Pharmacodynamics, 2012, 39, 527-541.	0.8	92
71	A physiological pharmacokinetic model for dermal absorption of vapors in the rat*1. Toxicology and Applied Pharmacology, 1986, 85, 286-294.	1.3	91
72	A physiologically based pharmacokinetic model for 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J and DBA/2J mice. Toxicology Letters, 1988, 42, 15-28.	0.4	89

#	Article	lF	CITATIONS
73	Incorporation of in vitro enzyme data into the physiologically-based pharmacokinetic (PB-PK) model for methylene chloride: implications for risk assessment. Toxicology Letters, 1988, 43, 97-116.	0.4	89
74	A map of the PPARα transcription regulatory network for primary human hepatocytes. Chemico-Biological Interactions, 2014, 209, 14-24.	1.7	89
75	The Vision of Toxicity Testing in the 21st Century: Moving from Discussion to Action. Toxicological Sciences, 2010, 117, 17-24.	1.4	88
76	A physiologically based pharmacokinetic and pharmacodynamic model to describe the oral dosing of rats with ethyl acrylate and its implications for risk assessment. Toxicology and Applied Pharmacology, 1992, 114, 246-260.	1.3	87
77	In Vitro Human Tissue Models in Risk Assessment: Report of a Consensus-Building Workshop. Toxicological Sciences, 2001, 59, 17-36.	1.4	87
78	A consistent approach for the application of pharmacokinetic modeling in cancer and noncancer risk assessment Environmental Health Perspectives, 2002, 110, 85-93.	2.8	87
79	Dose Response Relationship in Anti-Stress Gene Regulatory Networks. PLoS Computational Biology, 2007, 3, e24.	1.5	87
80	Considering pharmacokinetic and mechanistic information in cancer risk assessments for environmental contaminants: Examples with vinyl chloride and trichloroethylene. Chemosphere, 1995, 31, 2561-2578.	4.2	86
81	Sensitivity Analysis of a Physiological Model for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD): Assessing the Impact of Specific Model Parameters on Sequestration in Liver and Fat in the Rat. Toxicological Sciences, 2000, 54, 71-80.	1.4	86
82	Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response. Biochemical and Biophysical Research Communications, 2011, 407, 360-365.	1.0	86
83	Genomic Signatures and Dose-Dependent Transitions in Nasal Epithelial Responses to Inhaled Formaldehyde in the Rat. Toxicological Sciences, 2008, 105, 368-383.	1.4	84
84	Integrating pathway-based transcriptomic data into quantitative chemical risk assessment: A five chemical case study. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 746, 135-143.	0.9	84
85	Modeling the tissue solubilities and metabolic rate constant (Vmax) of halogenated methanes, ethanes, and ethylenes. Toxicology Letters, 1988, 43, 235-256.	0.4	82
86	Physiologically based pharmacokinetic modeling of the lactating rat and nursing pup: A multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid. Toxicology and Applied Pharmacology, 1990, 102, 497-513.	1.3	82
87	Physiologically based pharmacokinetic modeling with trichloroethylene and its metabolite, trichloroacetic acid, in the rat and mouse. Toxicology and Applied Pharmacology, 1991, 109, 183-195.	1.3	82
88	Adverse Outcome Pathways can drive nonâ€animal approaches for safety assessment. Journal of Applied Toxicology, 2015, 35, 971-975.	1.4	82
89	Saturable Metabolism and its Relationship to Toxicity. CRC Critical Reviews in Toxicology, 1981, 9, 105-150.	4.9	81
90	Biologically Based Pharmacodynamic Models: Tools for Toxicological Research and Risk Assessment. Annual Review of Pharmacology and Toxicology, 1991, 31, 503-523.	4.2	79

#	Article	IF	Citations
91	Development of physiologically based pharmacokinetic and physiologically based pharmacodymamic models for applications in toxicology and risk assessment. Toxicology Letters, 1995, 79, 35-44.	0.4	7 9
92	Toxic effects of nonadecafluoro-n-decanoic acid in rats. Toxicology and Applied Pharmacology, 1986, 85, 169-180.	1.3	77
93	Development of a physiologically based pharmacokinetic model for risk assessment with 1,4-dioxane. Toxicology and Applied Pharmacology, 1990, 105, 37-54.	1.3	77
94	A biologically based risk assessment for vinyl acetate-induced cancer and noncancer inhalation toxicity. Toxicological Sciences, 1999, 51, 19-35.	1.4	77
95	A physiologically based pharmacokinetic model for nicotine disposition in the Sprague-Dawley rat. Toxicology and Applied Pharmacology, 1992, 116, 177-188.	1.3	76
96	Dose-dependent transitions in Nrf2-mediated adaptive response and related stress responses to hypochlorous acid in mouse macrophages. Toxicology and Applied Pharmacology, 2009, 238, 27-36.	1.3	76
97	Evaluating Placental Transfer and Tissue Concentrations of Manganese in the Pregnant Rat and Fetuses after Inhalation Exposures with a PBPK Model. Toxicological Sciences, 2009, 112, 44-58.	1.4	76
98	Long Isoforms of NRF1 Contribute to Arsenic-Induced Antioxidant Response in Human Keratinocytes. Environmental Health Perspectives, 2011, 119, 56-62.	2.8	76
99	Pathways of Toxicity. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 53-61.	0.9	75
100	Pharmacokinetics of tetrachloroethylene*1. Toxicology and Applied Pharmacology, 1988, 93, 108-117.	1.3	74
101	The Next Generation of Risk Assessment Multi-Year Study—Highlights of Findings, Applications to Risk Assessment, and Future Directions. Environmental Health Perspectives, 2016, 124, 1671-1682.	2.8	74
102	In vivo metabolic interactions of benzene and toluene. Toxicology Letters, 1990, 52, 141-152.	0.4	73
103	PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELING OF STYRENE AND STYRENE OXIDE RESPIRATORY-TRACT DOSIMETRY IN RODENTS AND HUMANS. Inhalation Toxicology, 2002, 14, 789-834.	0.8	7 3
104	In vitro metabolism of di(2-ethylhexyl) phthalate (DEHP) by various tissues and cytochrome P450s of human and rat. Toxicology in Vitro, 2012, 26, 315-322.	1.1	73
105	Predicting Cancer Risk from Vinyl Chloride Exposure with a Physiologically Based Pharmacokinetic Model. Toxicology and Applied Pharmacology, 1996, 137, 253-267.	1.3	72
106	Development of a Physiologically Based Pharmacokinetic Model of Isopropanol and Its Metabolite Acetone. Toxicological Sciences, 2001, 63, 160-172.	1.4	72
107	Quantitative analyses and transcriptomic profiling of circulating messenger RNAs as biomarkers of rat liver injury. Hepatology, 2010, 51, 2127-2139.	3.6	72
108	Activation of Nrf2-mediated oxidative stress response in macrophages by hypochlorous acid. Toxicology and Applied Pharmacology, 2008, 226, 236-243.	1.3	70

#	Article	IF	CITATIONS
109	An Analysis of <i>N </i> -Acetylcysteine Treatment for Acetaminophen Overdose Using a Systems Model of Drug-Induced Liver Injury. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 529-540.	1.3	70
110	Evidence That Atrazine and Diaminochlorotriazine Inhibit the Estrogen/Progesterone Induced Surge of Luteinizing Hormone in Female Sprague-Dawley Rats Without Changing Estrogen Receptor Action. Toxicological Sciences, 2004, 79, 278-286.	1.4	68
111	Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function. Scientific Reports, 2016, 6, 28994.	1.6	67
112	PHYSIOLOGICAL MODELLING OF ORGANIC COMPOUNDS < xref ref-type="fn" rid="fn1" > < sup > * < / sup > < / xref > . Annals of Occupational Hygiene, 1991, 35, 309-21.	1.9	66
113	A Physiologically Based Pharmacokinetic Model for 2,3,7,8-Tetrabromodibenzo-p-dioxin (TBDD) in the Rat: Tissue Distribution and CYP1A Induction. Toxicology and Applied Pharmacology, 1993, 121, 87-98.	1.3	66
114	Applying Simulation Modeling to Problems in Toxicology and Risk Assessment: A Short Perspective. Toxicology and Applied Pharmacology, 1995, 133, 181-187.	1.3	66
115	The use of Markov chain Monte Carlo uncertainty analysis to support a Public Health Goal for perchloroethylene. Regulatory Toxicology and Pharmacology, 2007, 47, 1-18.	1.3	66
116	Co-culture of Hepatocytes and Kupffer Cells as an InÂVitro Model of Inflammation and Drug-Induced Hepatotoxicity. Journal of Pharmaceutical Sciences, 2016, 105, 950-964.	1.6	66
117	Non-monotonic dose–response relationship in steroid hormone receptor-mediated gene expression. Journal of Molecular Endocrinology, 2007, 38, 569-585.	1.1	65
118	Comparison and evaluation of pharmacokinetics of PFOA and PFOS in the adult rat using a physiologically based pharmacokinetic model. Reproductive Toxicology, 2012, 33, 452-467.	1.3	65
119	Tissue Exposures to Free and Glucuronidated Monobutylyphthalate in the Pregnant and Fetal Rat following Exposure to Di-n-butylphthalate: Evaluation with a PBPK Model. Toxicological Sciences, 2008, 103, 241-259.	1.4	64
120	The dissociation of the first oxygen molecule from some mammalian oxyhemoglobins. Journal of Biological Chemistry, 1971, 246, 5919-23.	1.6	64
121	Inhalation pharmacokinetics: Evaluating systemic extraction, total in vivo metabolism, and the time course of enzyme induction for inhaled styrene in rats based on arterial blood:Inhaled air concentration ratios. Toxicology and Applied Pharmacology, 1984, 73, 176-187.	1.3	63
122	Gas Uptake Inhalation Techniques and the Rates of Metabolism of Chloromethanes, Chloroethanes, and Chloroethylenes in the Rat. Inhalation Toxicology, 1990, 2, 295-319.	0.8	63
123	Negative selection in hepatic tumor promotion in relation to cancer risk assessment. Toxicology, 1995, 102, 223-237.	2.0	63
124	Modeling of Human Dermal Absorption of Octamethylcyclotetrasiloxane (D4) and Decamethylcyclopentasiloxane (D5). Toxicological Sciences, 2007, 99, 422-431.	1.4	63
125	Physiologically Based Modeling of Vinyl Acetate Uptake, Metabolism, and Intracellular pH Changes in the Rat Nasal Cavity. Toxicology and Applied Pharmacology, 1997, 142, 386-400.	1.3	62
126	Time dependencies in perfluorooctylacids disposition in rat and monkeys: A kinetic analysis. Toxicology Letters, 2008, 177, 38-47.	0.4	62

#	Article	IF	CITATIONS
127	Association between Arsenic Suppression of Adipogenesis and Induction of CHOP10 via the Endoplasmic Reticulum Stress Response. Environmental Health Perspectives, 2013, 121, 237-243.	2.8	62
128	Molecular Signaling Network Motifs Provide a Mechanistic Basis for Cellular Threshold Responses. Environmental Health Perspectives, 2014, 122, 1261-1270.	2.8	62
129	A Physiologically Based Description of Ethylene Oxide Dosimetry in the Rat. Toxicology and Industrial Health, 1992, 8, 121-140.	0.6	61
130	Adaptive Posttranslational Control in Cellular Stress Response Pathways and Its Relationship to Toxicity Testing and Safety Assessment. Toxicological Sciences, 2015, 147, 302-316.	1.4	61
131	Adjusting Exposure Limits for Long and Short Exposure Periods Using A Physiological Pharmacokinetic Model. AIHA Journal, 1987, 48, 335-343.	0.4	60
132	Assessing the relevance of in vitro measures of phthalate inhibition of steroidogenesis for in vivo response. Toxicology in Vitro, 2010, 24, 327-334.	1.1	60
133	Toxicology of cyclotrimethylenetrinitramine: Distribution and metabolism in the rat and the miniature swine*1, *2. Toxicology and Applied Pharmacology, 1977, 39, 531-541.	1.3	59
134	A physiologically based pharmacokinetic model for retinoic acid and its metabolites. Journal of the American Academy of Dermatology, 1997, 36, S77-S85.	0.6	59
135	Application of a Physiologically Based Pharmacokinetic Model for Isopropanol in the Derivation of a Reference Dose and Reference Concentration. Regulatory Toxicology and Pharmacology, 2002, 36, 51-68.	1.3	59
136	In silico toxicology: simulating interaction thresholds for human exposure to mixtures of trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane Environmental Health Perspectives, 2002, 110, 1031-1039.	2.8	59
137	Analysis of Manganese Tracer Kinetics and Target Tissue Dosimetry in Monkeys and Humans with Multi-Route Physiologically Based Pharmacokinetic Models. Toxicological Sciences, 2011, 120, 481-498.	1.4	59
138	CNC-bZIP Protein Nrf1-Dependent Regulation of Glucose-Stimulated Insulin Secretion. Antioxidants and Redox Signaling, 2015, 22, 819-831.	2.5	59
139	Defining and modeling known adverse outcome pathways: Domoic acid and neuronal signaling as a case study. Environmental Toxicology and Chemistry, 2011, 30, 9-21.	2.2	58
140	Hepatocyte-specific Nrf2 deficiency mitigates high-fat diet-induced hepatic steatosis: Involvement of reduced PPARÎ ³ expression. Redox Biology, 2020, 30, 101412.	3.9	58
141	Physiological Modeling Reveals Novel Pharmacokinetic Behavior for Inhaled Octamethylcyclotetrasiloxane in Rats. Toxicological Sciences, 2001, 60, 214-231.	1.4	57
142	Application of pharmacokinetic data to the risk assessment of inhaled manganese. NeuroToxicology, 2006, 27, 752-764.	1.4	57
143	Enhancing and Extending Biological Performance and Resilience. Dose-Response, 2018, 16, 155932581878450.	0.7	57
144	A Multicompartment Geometric Model of the Liver in Relation to Regional Induction of Cytochrome P450s. Toxicology and Applied Pharmacology, 1997, 144, 135-144.	1.3	56

#	Article	IF	Citations
145	Phase I to II cross-induction of xenobiotic metabolizing enzymes: A feedforward control mechanism for potential hormetic responses. Toxicology and Applied Pharmacology, 2009, 237, 345-356.	1.3	56
146	Evaluation of placental and lactational pharmacokinetics of PFOA and PFOS in the pregnant, lactating, fetal and neonatal rat using a physiologically based pharmacokinetic model. Reproductive Toxicology, 2012, 33, 468-490.	1.3	55
147	A Kinetic Analysis of the Binding of Oxygen and Carbon Monoxide to Lamprey Hemoglobin. Journal of Biological Chemistry, 1971, 246, 4790-4799.	1.6	55
148	Pharmacokinetics of [125I]-2-lodo-3,7,8-trichlorodibenzo-p-dioxin in mice: Analysis with a physiological modeling approach. Toxicology and Applied Pharmacology, 1990, 103, 411-419.	1.3	54
149	Characterization of the Pharmacokinetics of Gasoline Using PBPK Modeling with a Complex Mixtures Chemical Lumping Approach. Inhalation Toxicology, 2003, 15, 961-986.	0.8	54
150	Deficiency in the nuclear factor E2-related factor 2 renders pancreatic \hat{l}^2 -cells vulnerable to arsenic-induced cell damage. Toxicology and Applied Pharmacology, 2012, 264, 315-323.	1.3	54
151	Longâ€Term Stability of Primary Rat Hepatocytes in Micropatterned Cocultures. Journal of Biochemical and Molecular Toxicology, 2013, 27, 204-212.	1.4	54
152	The use of inhalation techniques to assess the kinetic constants of 1,1-dichloroethylene metabolism. Toxicology and Applied Pharmacology, 1979, 47, 395-409.	1.3	53
153	Cross-Regulations among NRFs and KEAP1 and Effects of their Silencing on Arsenic-Induced Antioxidant Response and Cytotoxicity in Human Keratinocytes. Environmental Health Perspectives, 2012, 120, 583-589.	2.8	53
154	Modeling Drug- and Chemical-Induced Hepatotoxicity with Systems Biology Approaches. Frontiers in Physiology, 2012, 3, 462.	1.3	53
155	Regulatory role of KEAP1 and NRF2 in PPARγ expression and chemoresistance in human non-small-cell lung carcinoma cells. Free Radical Biology and Medicine, 2012, 53, 758-768.	1.3	53
156	Physiological model for tissue glutathione depletion and increased resynthesis after ethylene dichloride exposure. Journal of Pharmacology and Experimental Therapeutics, 1988, 245, 563-8.	1.3	53
157	The Human Toxome Project. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 112-124.	0.9	52
158	Assessing interaction thresholds for trichloroethylene in combination with tetrachloroethylene and 1,1,1-trichloroethane using gas uptake studies and PBPK modeling. Archives of Toxicology, 2001, 75, 134-144.	1.9	51
159	Computational Systems Biology and Dose-Response Modeling in Relation to New Directions in Toxicity Testing. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2010, 13, 253-276.	2.9	51
160	A mechanistic redefinition of adverse effects $\hat{a}\in$ a key step in the toxicity testing paradigm shift. ALTEX: Alternatives To Animal Experimentation, 2010, 27, 243-252.	0.9	51
161	Pathological and hepatic ultrastructural effects of a single dose of perfluoro-n-decanoic acid in the rat, hamster, mouse, and guinea pig. Fundamental and Applied Toxicology, 1987, 9, 522-540.	1.9	50
162	A Physiologically Based Pharmacokinetic Model for Acrylamide and Its Metabolite, Glycidamide, in the Rat. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2003, 66, 253-274.	1.1	50

#	Article	IF	CITATIONS
163	New directions in incidence–dose modeling. Trends in Biotechnology, 2005, 23, 122-127.	4.9	49
164	Pharmacokinetic Modeling of Disposition and Time-Course Studies With [14 C]Atrazine. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2003, 66, 941-964.	1.1	48
165	The need for a new toxicity testing and risk analysis paradigm to implement REACH or any other large scale testing initiative. Archives of Toxicology, 2007, 81, 385-387.	1.9	48
166	Reply to Invited Commentaries on Toxicity Testing in the 21st Century: Implications for Human Health Risk Assessment. Risk Analysis, 2009, 29, 492-497.	1.5	48
167	The Future of Toxicity Testing. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2010, 13, 163-196.	2.9	48
168	Studies on Ligand Binding to Hemoglobins from Teleosts and Elasmobranchs. Journal of Biological Chemistry, 1973, 248, 331-341.	1.6	48
169	The significance of multiple detoxification pathways for reactive metabolites in the toxicity of 1,1-dichloroethylene. Toxicology and Applied Pharmacology, 1980, 52, 422-432.	1.3	47
170	Tissue Dosimetry, Pharmacokinetic Modeling, and Interspecies Scaling Factors. Risk Analysis, 1995, 15, 533-537.	1.5	47
171	Physiologically based pharmacokinetic/pharmacodynamic modeling of the toxicologic interaction between carbon tetrachloride and Kepone. Archives of Toxicology, 1996, 70, 704-713.	1.9	47
172	Toxicokinetics and Physiologically Based Toxicokinetics in Toxicology and Risk Assessment. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2003, 6, 1-40.	2.9	47
173	Physiological Modeling of Inhalation Kinetics of Octamethylcyclotetrasiloxane in Humans during Rest and Exercise. Toxicological Sciences, 2003, 72, 3-18.	1.4	47
174	Dermal absorption and penetration of jet fuel components in humans. Toxicology Letters, 2006, 165, 11-21.	0.4	46
175	Manganese Tissue Dosimetry in Rats and Monkeys: Accounting for Dietary and Inhaled Mn with Physiologically based Pharmacokinetic Modeling. Toxicological Sciences, 2009, 108, 22-34.	1.4	46
176	Mutagenicity oftrans-anethole, estragole, eugenol, and safrole in the amesSalmonella typhimurium assay. Bulletin of Environmental Contamination and Toxicology, 1982, 28, 647-654.	1.3	45
177	Pharmacokinetic Modeling of Manganese in the Rat IV: Assessing Factors that Contribute to Brain Accumulation During Inhalation Exposure. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 413-426.	1.1	45
178	Use of Short-term Transcriptional Profiles to Assess the Long-term Cancer-Related Safety of Environmental and Industrial Chemicals. Toxicological Sciences, 2009, 112, 311-321.	1.4	45
179	A Bistable Switch Underlying B-Cell Differentiation and Its Disruption by the Environmental Contaminant 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Toxicological Sciences, 2010, 115, 51-65.	1.4	45
180	Pharmacokinetics, biochemical mechanism and mutation accumulation: a comprehensive model of chemical carcinogenesis. Toxicology Letters, 1988, 43, 189-200.	0.4	44

#	Article	IF	CITATIONS
181	Hepatic Foci in Rats after Diethylnitrosamine Initiation and 2,3,7,8-Tetrachlorodibenzo-p-dioxin Promotion: Evaluation of a Quantitative Two-Cell Model and of CYP 1A1/1A2 as a Dosimeter. Toxicology and Applied Pharmacology, 1997, 146, 281-293.	1.3	44
182	Hormesis and Adaptive Cellular Control Systems. Dose-Response, 2008, 6, dose-response.0.	0.7	44
183	In vitro intestinal and hepatic metabolism of Di(2-ethylhexyl) phthalate (DEHP) in human and rat. Toxicology in Vitro, 2013, 27, 1451-1457.	1.1	44
184	Effects of Endogenous Formaldehyde in Nasal Tissues on Inhaled Formaldehyde Dosimetry Predictions in the Rat, Monkey, and Human Nasal Passages. Toxicological Sciences, 2014, 138, 412-424.	1.4	44
185	Detection and localization of an estrogen receptor beta splice variant protein ($ER\hat{1}^22$) in the adult female rat forebrain and midbrain regions. Journal of Comparative Neurology, 2007, 505, 249-267.	0.9	43
186	Profiling Dose-Dependent Activation of p53-Mediated Signaling Pathways by Chemicals with Distinct Mechanisms of DNA Damage. Toxicological Sciences, 2014, 142, 56-73.	1.4	43
187	lodoacetic Acid Activates Nrf2-Mediated Antioxidant Response <i>in Vitro</i> and <i>in Vivo</i> Environmental Science & amp; Technology, 2014, 48, 13478-13488.	4.6	43
188	Metabolism of inhaled brominated hydrocarbons: Validation of gas uptake results by determination of a stable metabolite. Toxicology and Applied Pharmacology, 1982, 66, 55-68.	1.3	42
189	Evaluating Transport of Manganese from Olfactory Mucosa to Striatum by Pharmacokinetic Modeling. Toxicological Sciences, 2007, 97, 265-278.	1.4	42
190	Evidence-based toxicology for the 21st century: Opportunities and challenges. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 74-104.	0.9	42
191	Dermal absorption of dihalomethane vapors. Toxicology and Applied Pharmacology, 1985, 79, 150-158.	1.3	41
192	Physiological pharmacokinetics and cancer risk assessment. Cancer Letters, 1993, 69, 1-14.	3.2	41
193	Is the Relationship between Prenatal Exposure to PCB-153 and Decreased Birth Weight Attributable to Pharmacokinetics?. Environmental Health Perspectives, 2013, 121, 1219-1224.	2.8	41
194	Can case study approaches speed implementation of the NRC report: "Toxicity Testing in the 21st Century: A Vision and a Strategy?â€, ALTEX: Alternatives To Animal Experimentation, 2011, 28, 175-182.	0.9	41
195	Perfluoro-n-decanoic acid: Induction of peroxisomal \hat{l}^2 -oxidation by a fatty acid with dioxin-like toxicity. Lipids, 1988, 23, 115-119.	0.7	40
196	A Physiologically Based Dosimetry Description of Acrylonitrile and Cyanoethylene Oxide in the Rat. Toxicology and Applied Pharmacology, 1995, 134, 185-194.	1.3	40
197	Physiologically based estimation of in vivo rates of bromodicnioromethane metabolism in the research described in this article has been reviewed by the NHEERL, US Environmental Protection Agency, and has been approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency nor does the mention of trade names or commercial products	2.0	40
198	A Biologically Based Dose-Response Model for Dietary Iodide and the Hypothalamic-Pituitary-Thyroid Axis in the Adult Rat: Evaluation of Iodide Deficiency. Toxicological Sciences, 2008, 102, 241-253.	1.4	40

#	Article	IF	CITATIONS
199	Why is elevation of serum cholesterol associated with exposure to perfluoroalkyl substances (PFAS) in humans? A workshop report on potential mechanisms. Toxicology, 2021, 459, 152845.	2.0	40
200	Evaluation of Physiologically Based Pharmacokinetic Models in Risk Assessment: An Example with Perchloroethylene. Critical Reviews in Toxicology, 2005, 35, 413-433.	1.9	39
201	Evaluation of Potential Toxicity from Co-Exposure to Three CNS Depressants (Toluene, Ethylbenzene,) Tj ETQq1 Environmental Hygiene, 2005, 2, 127-135.	1 0.784314 0.4	rgBT /Over 39
202	Incorporation of Tissue Reaction Kinetics in a Computational Fluid Dynamics Model for Nasal Extraction of Inhaled Hydrogen Sulfide in Rats. Toxicological Sciences, 2006, 90, 198-207.	1.4	39
203	Can the observed association between serum perfluoroalkyl substances and delayed menarche be explained on the basis of puberty-related changes in physiology and pharmacokinetics?. Environment International, 2015, 82, 61-68.	4.8	39
204	Potentiation of 2,5-hexanedione neurotoxicity by methyl ethyl ketone*1, *2. Toxicology and Applied Pharmacology, 1985, 81, 319-327.	1.3	38
205	Physiologically based pharmacokinetic model for vinylidene chloride. Toxicology and Applied Pharmacology, 1988, 95, 230-240.	1.3	38
206	Determining kinetic constants of chlorinated ethane metabolism in the rat from rates of exhalation. Toxicology and Applied Pharmacology, 1989, 99, 344-353.	1.3	38
207	Mode of action and tissue dosimetry in current and future risk assessments. Science of the Total Environment, 2001, 274, 3-14.	3.9	38
208	Competitive Inhibition of Thyroidal Uptake of Dietary Iodide by Perchlorate Does Not Describe Perturbations in Rat Serum Total T ₄ and TSH. Environmental Health Perspectives, 2009, 117, 731-738.	2.8	38
209	Genome-wide Analysis of DNA Methylation and Gene Expression Changes in the Mouse Lung following Subchronic Arsenate Exposure. Toxicological Sciences, 2010, 117, 404-417.	1.4	38
210	Organic Extract Contaminants from Drinking Water Activate Nrf2-Mediated Antioxidant Response in a Human Cell Line. Environmental Science & Environment	4.6	38
211	Assessing molecular initiating events (MIEs), key events (KEs) and modulating factors (MFs) for styrene responses in mouse lungs using whole genome gene expression profiling following 1-day and multi-week exposures. Toxicology and Applied Pharmacology, 2017, 335, 28-40.	1.3	38
212	Gas Uptake Studies of Deuterium Isotope Effects on Dichloromethane Metabolism in Female B6C3F1 Mice in Vivo. Toxicology and Applied Pharmacology, 1994, 128, 158-165.	1.3	36
213	A Physiologically Based Pharmacokinetic Description of the Oral Uptake, Tissue Dosimetry, and Rates of Metabolism of Bromodichloromethane in the Male Rat. Toxicology and Applied Pharmacology, 1998, 150, 205-217.	1.3	36
214	Physiologically Based Pharmacokinetic (PBPK) Models for Nasal Tissue Dosimetry of Organic Esters: Assessing the State-of-Knowledge and Risk Assessment Applications with Methyl Methacrylate and Vinyl Acetate. Regulatory Toxicology and Pharmacology, 2002, 36, 234-245.	1.3	36
215	Application of biologically based computer modeling to simple or complex mixtures Environmental Health Perspectives, 2002, 110, 957-963.	2.8	36
216	Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents. Mutation Research - Reviews in Mutation Research, 2016, 767, 77-91.	2.4	36

#	Article	IF	Citations
217	Physiologically-Based Pharmacokinetic Modeling and Bioactivation of Xenobiotics. Toxicology and Industrial Health, 1994, 10, 1-24.	0.6	35
218	Adipocyte-specific deficiency of Nfe2l1 disrupts plasticity of white adipose tissues and metabolic homeostasis in mice. Biochemical and Biophysical Research Communications, 2018, 503, 264-270.	1.0	35
219	Saturable metabolism and the acute toxicity of $1,1$ -dichloroethylene. Toxicology and Applied Pharmacology, $1979, 47, 385-393$.	1.3	34
220	Quantitative Identification of Atrazine and its Chlorinated Metabolites in Plasma. Journal of Analytical Toxicology, 2003, 27, 569-573.	1.7	34
221	Applying Mode-of-Action and Pharmacokinetic Considerations in Contemporary Cancer Risk Assessments: An Example with Trichloroethylene. Critical Reviews in Toxicology, 2004, 34, 385-445.	1.9	34
222	Chemical mixture toxicology: from descriptive to mechanistic, and going on to in silico toxicology. Environmental Toxicology and Pharmacology, 2004, 18, 65-81.	2.0	34
223	Pharmacokinetic Modeling of Manganese. I. Dose Dependencies of Uptake and Elimination. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2007, 70, 1493-1504.	1.1	34
224	Inhalation Dosimetry Modeling with Decamethylcyclopentasiloxane in Rats and Humans. Toxicological Sciences, 2008, 105, 275-285.	1.4	34
225	Physiologically Based Pharmacokinetic/Toxicokinetic Modeling. Methods in Molecular Biology, 2012, 929, 439-499.	0.4	34
226	Suppression of NRF2–ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells. Toxicology and Applied Pharmacology, 2016, 292, 1-7.	1.3	34
227	Long isoforms of NRF1 negatively regulate adipogenesis via suppression of PPARγ expression. Redox Biology, 2020, 30, 101414.	3.9	34
228	Endocrine Active Compounds: From Biology to Dose Response Assessment. Critical Reviews in Toxicology, 1998, 28, 363-423.	1.9	33
229	Using Human Data to Protect the Public's Health. Regulatory Toxicology and Pharmacology, 2001, 33, 234-256.	1.3	33
230	The Effect of Pregnancy on Renal Clearance of Boron in Rats Given Boric Acid Orally. Toxicological Sciences, 2001, 60, 257-263.	1.4	33
231	Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes. Toxicology and Applied Pharmacology, 2013, 273, 435-441.	1.3	33
232	Quantitative bias analysis for epidemiological associations of perfluoroalkyl substance serum concentrations and early onset of menopause. Environment International, 2017, 99, 245-254.	4.8	33
233	Harmonization: Developing Consistent Guidelines for Applying Mode of Action and Dosimetry Information to Cancer and Noncancer Risk Assessment. Human and Ecological Risk Assessment (HERA), 1998, 4, 75-115.	1.7	32
234	On the incorporation of chemical-specific information in risk assessment. Toxicology Letters, 2008, 180, 100-109.	0.4	32

#	Article	IF	CITATIONS
235	Route-Specific Differences in Distribution Characteristics of Octamethylcyclotetrasiloxane in Rats: Analysis Using PBPK Models. Toxicological Sciences, 2003, 71, 41-52.	1.4	31
236	Mechanistic approaches for mixture risk assessmentsâ€"present capabilities with simple mixtures and future directions. Environmental Toxicology and Pharmacology, 2004, 16, 1-11.	2.0	31
237	Disposition of diiosononyl phthalate and its effects on sexual development of the male fetus following repeated dosing in pregnant rats. Reproductive Toxicology, 2013, 35, 56-69.	1.3	31
238	Assessing dose-dependent differences in DNA-damage, p53 response and genotoxicity for quercetin and curcumin. Toxicology in Vitro, 2013, 27, 1877-1887.	1.1	31
239	Physiologically Based Pharmacokinetic Modeling of Chemical Mixtures. , 1994, , 399-437.		31
240	1,1-Dichloroethylene nephrotoxicity in the rat. Toxicology and Applied Pharmacology, 1978, 46, 131-141.	1.3	30
241	Kinetic characterization of CYP2E1 inhibition in vivo and in vitro by the chloroethylenes. Archives of Toxicology, 1998, 72, 609-621.	1.9	30
242	Development of a Physiologically Based Pharmacokinetic Model for Volatile Fractions of Gasoline Using Chemical Lumping Analysis. Environmental Science & Environmental Science & 2004, 38, 5674-5681.	4.6	30
243	Dose–response modeling in reproductive toxicology in the systems biology era. Reproductive Toxicology, 2005, 19, 327-337.	1.3	30
244	Oral absorption and oxidative metabolism of atrazine in rats evaluated by physiological modeling approaches. Toxicology, 2007, 240, 1-14.	2.0	30
245	Kinetics of selected di-n-butyl phthalate metabolites and fetal testosterone following repeated and single administration in pregnant rats. Toxicology, 2009, 255, 80-90.	2.0	30
246	Lactational Transfer of Manganese in Rats: Predicting Manganese Tissue Concentration in the Dam and Pups from Inhalation Exposure with a Pharmacokinetic Model. Toxicological Sciences, 2009, 112, 23-43.	1.4	30
247	Evaluating Pharmacokinetic and Pharmacodynamic Interactions with Computational Models in Supporting Cumulative Risk Assessment. International Journal of Environmental Research and Public Health, 2011, 8, 1613-1630.	1.2	30
248	Divergent Effects of Sulforaphane on Basal and Glucose-Stimulated Insulin Secretion in \hat{l}^2 -Cells: Role of Reactive Oxygen Species and Induction of Endogenous Antioxidants. Pharmaceutical Research, 2013, 30, 2248-2259.	1.7	30
249	Editor's Highlight: Screening ToxCast Prioritized Chemicals for <i>PPARG</i> Function in a Human Adipose-Derived Stem Cell Model of Adipogenesis. Toxicological Sciences, 2017, 155, 85-100.	1.4	30
250	Developing context appropriate toxicity testing approaches using new alternative methods (NAMs). ALTEX: Alternatives To Animal Experimentation, 2019, 36, 532-534.	0.9	30
251	Oral toxicity of 1,1-Dichloroethylene in the rat: Effects of sex, age, and fasting. Environmental Health Perspectives, 1977, 21, 157-163.	2.8	29
252	Dose-Response Modeling of Cytochrome P450 Induction in Rats by Octamethylcyclotetrasiloxane. Toxicological Sciences, 2002, 67, 159-172.	1.4	29

#	Article	IF	CITATIONS
253	Molecular circuits, biological switches, and nonlinear dose-response relationships Environmental Health Perspectives, 2002, 110, 971-978.	2.8	29
254	Single Cell Analysis of Switch-Like Induction of CYP1A1 in Liver Cell Lines. Toxicological Sciences, 2004, 78, 287-294.	1.4	29
255	Bayesian Estimation of Pharmacokinetic and Pharmacodynamic Parameters in a Modeâ€ofâ€Actionâ€Based Cancer Risk Assessment for Chloroform. Risk Analysis, 2007, 27, 1535-1551.	1.5	29
256	Are highly lipophilic volatile compounds expected to bioaccumulate with repeated exposures?. Toxicology Letters, 2008, 179, 85-92.	0.4	29
257	Multi-Dose-Route, Multi-Species Pharmacokinetic Models for Manganese and Their Use in Risk Assessment. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2010, 73, 217-234.	1.1	29
258	A dose response study to assess effects after dietary administration of diisononyl phthalate (DINP) in gestation and lactation on male rat sexual development. Reproductive Toxicology, 2013, 35, 70-80.	1.3	29
259	Mutagenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin and perfluoro-n-decanoic acid in L5178Y mouse-lymphoma cells. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1982, 105, 445-449.	1.2	28
260	Use of a Pharmacokinetic-Driven Computational Fluid Dynamics Model to Predict Nasal Extraction of Hydrogen Sulfide in Rats and Humans. Toxicological Sciences, 2006, 94, 359-367.	1.4	28
261	Identification of Nrf2-dependent airway epithelial adaptive response to proinflammatory oxidant-hypochlorous acid challenge by transcription profiling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L469-L477.	1.3	28
262	Cross-Species Transcriptomic Analysis of Mouse and Rat Lung Exposed to Chloroprene. Toxicological Sciences, 2013, 131, 629-640.	1.4	28
263	A hybrid CFD-PBPK model for naphthalene in rat and human with IVIVE for nasal tissue metabolism and cross-species dosimetry. Inhalation Toxicology, 2014, 26, 333-344.	0.8	28
264	Doseâ€"Response Characteristics of Uterine Responses in Rats Exposed to Estrogen Agonists. Regulatory Toxicology and Pharmacology, 1998, 28, 133-149.	1.3	27
265	Biological regulation of receptor-hormone complex concentrations in relation to dose-response assessments for endocrine-active compounds. Toxicological Sciences, 1999, 48, 38-50.	1.4	27
266	Progestin receptor expression in the developing rat brain depends upon activation of estrogen receptor \hat{l}^2 . Brain Research, 2006, 1082, 50-60.	1,1	27
267	Pharmacokinetic Modeling of Manganese. III. Physiological Approaches Accounting for Background and Tracer Kinetics. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2007, 70, 1515-1526.	1.1	27
268	A physiologically based pharmacokinetic model for lactational transfer of PCB 153 with or without PCB 126 in mice. Archives of Toxicology, 2007, 81, 101-111.	1.9	27
269	Water pollutant fingerprinting tracks recent industrial transfer from coastal to inland China: A case study. Scientific Reports, 2013, 3, 1031.	1.6	27
270	PBPK Model for Atrazine and Its Chlorotriazine Metabolites in Rat and Human. Toxicological Sciences, 2016, 150, 441-453.	1.4	27

#	Article	IF	CITATIONS
271	Biologically Based, Quantitative Risk Assessment of Neurotoxicants. Fundamental and Applied Toxicology, 1996, 29, 18-30.	1.9	26
272	A Model for Pharmacokinetics and Physiological Feedback among Hormones of the Testicular-Pituitary Axis in Adult Male Rats: A Framework for Evaluating Effects of Endocrine Active Compounds. Toxicological Sciences, 1998, 45, 174-187.	1.4	26
273	The application of PBPK models in estimating human brain tissue manganese concentrations. NeuroToxicology, 2017, 58, 226-237.	1.4	26
274	Multiple receptors shape the estrogen response pathway and are critical considerations for the future of <i>in vitro</i> -based risk assessment efforts. Critical Reviews in Toxicology, 2017, 47, 570-586.	1.9	26
275	The distribution and metabolism of cyclotrimethylenetrinitramine (RDX) in the rat after subchronic administration. Toxicology and Applied Pharmacology, 1978, 46, 163-171.	1.3	25
276	Measurement of tumor-associated mutations in the nasal mucosa of rats exposed to varying doses of formaldehyde. Regulatory Toxicology and Pharmacology, 2010, 57, 274-283.	1.3	25
277	Evaluating opportunities for advancing the use of alternative methods in risk assessment through the development of fit-for-purpose in vitro assays. Toxicology in Vitro, 2018, 48, 310-317.	1.1	25
278	The inhalation toxicity of sulfolane (tetrahydrothiophene-1,1-dioxide). Toxicology and Applied Pharmacology, 1977, 40, 463-472.	1.3	24
279	An inhalation distribution model for the lactating mother and nursing child. Toxicology Letters, 1988, 43, 23-29.	0.4	24
280	PB-PK derived metabolic constants, hepatotoxicity, and lethality of BrCCl3 in rats pretreated with chlordecone, phenobarbital, or mirex*1. Toxicology and Applied Pharmacology, 1991, 109, 514-528.	1.3	24
281	Refined PBPK model of aggregate exposure to methyl tertiary-butyl ether. Toxicology Letters, 2007, 169, 222-235.	0.4	24
282	Hepatic sequestration of chlordecone and hexafluoroacetone evaluated by pharmacokinetic modeling. Toxicology, 2007, 234, 59-72.	2.0	24
283	Information-dependent enrichment analysis reveals time-dependent transcriptional regulation of the estrogen pathway of toxicity. Archives of Toxicology, 2017, 91, 1749-1762.	1.9	24
284	Embracing systems toxicology at single-cell resolution. Current Opinion in Toxicology, 2019, 16, 49-57.	2.6	24
285	A Comparison of the Toxicology of Triethylene Glycol Dinitrate and Propylene Glycol Dinitrate. AIHA Journal, 1973, 34, 526-532.	0.4	23
286	Pharmacokinetic Modeling of Manganese. II. Hepatic Processing After Ingestion and Inhalation. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2007, 70, 1505-1514.	1.1	23
287	Stochastic Modeling of B Lymphocyte Terminal Differentiation and Its Suppression by Dioxin. BMC Systems Biology, 2010, 4, 40.	3.0	23
288	Application of a Multi-Route Physiologically Based Pharmacokinetic Model for Manganese to Evaluate Dose-Dependent Neurological Effects in Monkeys. Toxicological Sciences, 2012, 129, 432-446.	1.4	23

#	Article	IF	CITATIONS
289	Development of an in vitro high content imaging assay for quantitative assessment of CAR-dependent mouse, rat, and human primary hepatocyte proliferation. Toxicology in Vitro, 2016, 36, 224-237.	1.1	23
290	Based on an analysis of mode of action, styrene-induced mouse lung tumors are not a human cancer concern. Regulatory Toxicology and Pharmacology, 2018, 95, 17-28.	1.3	23
291	MODE-OF-ACTION–BASED DOSIMETERS FOR INTERSPECIES EXTRAPOLATION OF VINYL ACETATE INHALATION RISK. Inhalation Toxicology, 2001, 13, 377-396.	0.8	23
292	Prediction of in vivo kinetic constants for metabolism of inhaled vapors from kinetic constants measured in vitro12. Fundamental and Applied Toxicology, 1981, 1, 403-409.	1.9	22
293	Recent Advances in Methodology and Concepts for Characterizing Inhalation Pharmacokinetic Parameters in Animals and Man. Drug Metabolism Reviews, 1982, 13, 799-826.	1.5	22
294	Dichloroacetate (DCA) dosimetry: interpreting DCA-induced liver cancer dose response and the potential for DCA to contribute to trichloroethylene-induced liver cancer. Toxicology Letters, 1999, 106, 9-21.	0.4	22
295	Combining transcriptomics and PBPK modeling indicates a primary role of hypoxia and altered circadian signaling in dichloromethane carcinogenicity in mouse lung and liver. Toxicology and Applied Pharmacology, 2017, 332, 149-158.	1.3	22
296	Lessons learned, challenges, and opportunities: The U.S. Endocrine Disruptor Screening Program. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 63-78.	0.9	22
297	Effect of Dose, Time, and Pretreatment on the Biliary Excretion and Tissue Distribution of 2,3,7,8-Tetrachlorodibenzo-p-dioxin in the Rat. Fundamental and Applied Toxicology, 1993, 21, 405-411.	1.9	21
298	Dioxin hepatic carcinogenesis: Biologically motivated modeling and risk assessment. Toxicology Letters, 1993, 68, 177-189.	0.4	21
299	Pharmacokinetic modeling of 2, 4-dichlorophenoxyacetic acid (2,4-D) in rat and in rabbit brain following single dose administration. Toxicology Letters, 1994, 74, 189-201.	0.4	21
300	Physiologically based pharmacokinetic (PB-PK) models in the study of the disposition and biological effects of xenobiotics and drugs. Toxicology Letters, 1995, 82-83, 341-348.	0.4	21
301	Requirements for a Biologically Realistic Cancer Risk Assessment for Inorganic Arsenic. International Journal of Toxicology, 1999, 18, 131-147.	0.6	21
302	PBPK modeling of complex hydrocarbon mixtures: gasoline. Environmental Toxicology and Pharmacology, 2004, 16, 107-119.	2.0	21
303	Derivation of an Inhalation Reference Concentration Based upon Olfactory Neuronal Loss in Male Rats following Subchronic Acetaldehyde Inhalation. Inhalation Toxicology, 2008, 20, 245-256.	0.8	21
304	Dose-Response Modeling of Etoposide-Induced DNA Damage Response. Toxicological Sciences, 2014, 137, 371-384.	1.4	21
305	Application of a combined aggregate exposure pathway and adverse outcome pathway (AEP-AOP) approach to inform a cumulative risk assessment: A case study with phthalates. Toxicology in Vitro, 2020, 66, 104855.	1.1	21
306	Sensitivity Analysis and the Design of Gas Uptake Inhalation Studies. Inhalation Toxicology, 1995, 7, 1075-1094.	0.8	20

#	Article	IF	CITATIONS
307	PHARMACODYNAMIC MODEL OF THE RAT ESTRUS CYCLE IN RELATION TO ENDOCRINE DISRUPTORS. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1997, 52, 189-209.	1.1	20
308	Identification of a Novel Hemoglobin Adduct in Sprague Dawley Rats Exposed to Atrazine. Chemical Research in Toxicology, 2006, 19, 692-700.	1.7	20
309	3-Chlorotyrosine and 3,5-Dichlorotyrosine as Biomarkers of Respiratory Tract Exposure to Chlorine Gas*. Journal of Analytical Toxicology, 2008, 32, 99-105.	1.7	20
310	Toxicogenomics for transcription factor-governed molecular pathways: moving on to roles beyond classification and prediction. Archives of Toxicology, 2013, 87, 7-11.	1.9	20
311	Editor's Highlight: Complete Attenuation of Mouse Lung Cell Proliferation and Tumorigenicity in CYP2F2 Knockout and CYP2F1 Humanized Mice Exposed to Inhaled Styrene for up to 2 Years Supports a Lack of Human Relevance. Toxicological Sciences, 2017, 159, 413-421.	1.4	20
312	Mechanistic modeling of rodent liver tumor promotion at low levels of exposure: an example related to dose-response relationships for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Human and Experimental Toxicology, 1998, 17, 683-690.	1.1	19
313	Regional Induction of CYP1A1 in Rat Liver Following Treatment with Mixtures of PCB 126 and PCB 153. Toxicologic Pathology, 2004, 32, 467-473.	0.9	19
314	Occupational exposure limits in the context of solvent mixtures, consumption of ethanol, and target tissue dose. Toxicology and Industrial Health, 2004, 20, 165-175.	0.6	19
315	Derivation of a drinking water equivalent level (DWEL) related to the maximum contaminant level goal for perfluorooctanoic acid (PFOA), a persistent water soluble compound. Food and Chemical Toxicology, 2009, 47, 2557-2589.	1.8	19
316	Dose–response approaches for nuclear receptor-mediated modes of action for liver carcinogenicity: Results of a workshop. Critical Reviews in Toxicology, 2014, 44, 50-63.	1.9	19
317	Considerations for refining the risk assessment process for formaldehyde: Results from an interdisciplinary workshop. Regulatory Toxicology and Pharmacology, 2019, 106, 210-223.	1.3	19
318	Development of a physiologically based pharmacokinetic model for 2,4-dichlorophenoxyacetic acid dosimetry in discrete areas of the rabbit brain. Neurotoxicology and Teratology, 1995, 17, 111-120.	1.2	18
319	PBPK modeling/Monte Carlo simulation of methylene chloride kinetic changes in mice in relation to age and acute, subchronic, and chronic inhalation exposure Environmental Health Perspectives, 1996, 104, 858-865.	2.8	18
320	PBTK Modeling Demonstrates Contribution of Dermal and Inhalation Exposure Components to End-Exhaled Breath Concentrations of Naphthalene. Environmental Health Perspectives, 2007, 115, 894-901.	2.8	18
321	Update on a Pharmacokinetic-Centric Alternative Tier II Program for MMTâ€"Part II: Physiologically Based Pharmacokinetic Modeling and Manganese Risk Assessment. Journal of Toxicology, 2012, 2012, 1-17.	1.4	18
322	Severity scoring of manganese health effects for categorical regression. NeuroToxicology, 2017, 58, 203-216.	1.4	18
323	A toxicogenomic approach for the risk assessment of the food contaminant acetamide. Toxicology and Applied Pharmacology, 2020, 388, 114872.	1.3	18
324	LETTERS TO THE EDITOR. Toxicology and Applied Pharmacology, 1998, 153, 133-134.	1.3	17

#	Article	IF	CITATIONS
325	Binary gene induction and protein expression in individual cells. Theoretical Biology and Medical Modelling, 2006, 3, 18.	2.1	17
326	Development of an integrated multi-species and multi-dose route PBPK model for volatile methyl siloxanes – D4 and D5. Regulatory Toxicology and Pharmacology, 2016, 74, S1-S13.	1.3	17
327	What do we Mean by Dose. Inhalation Toxicology, 1995, 7, 909-915.	0.8	16
328	Closed-Chamber Inhalation Pharmacokinetic Studies with Hexamethyldisiloxane in the Rat. Inhalation Toxicology, 2003, 15, 589-617.	0.8	16
329	Ethyl Acrylate Risk Assessment with a Hybrid Computational Fluid Dynamics and Physiologically Based Nasal Dosimetry Model. Toxicological Sciences, 2004, 79, 394-403.	1.4	16
330	All-or-none suppression of B cell terminal differentiation by environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology and Applied Pharmacology, 2013, 268, 17-26.	1.3	16
331	Fluid Dynamic Modeling to Support the Development of Flow-Based Hepatocyte Culture Systems for Metabolism Studies. Frontiers in Bioengineering and Biotechnology, 2016, 4, 72.	2.0	16
332	Pharmacokinetic Modeling Approaches for Describing the Uptake, Systemic Distribution, and Disposition of Inhaled Chemicals. Critical Reviews in Toxicology, 1995, 25, 237-254.	1.9	15
333	Induction of CYP1A1 in Primary Rat Hepatocytes by 3,3â€2,4,4â€2,5-Pentachlorobiphenyl: Evidence for a Switch Circuit Element 2Current address: CIIT-Centers for Health Research, Six Davis Drive, PO Box 12137, Research Triangle Park, NC 27709 Toxicological Sciences, 2004, 78, 276-286.	1.4	15
334	Differential Effects of Trovafloxacin on TNF-α and IL-6 Profiles in a Rat Hepatocyte–Kupffer Cell Coculture System. Applied in Vitro Toxicology, 2015, 1, 45-54.	0.6	15
335	Pharmacokinetic bias analysis of the epidemiological associations between serum polybrominated diphenyl ether (BDE-47) and timing of menarche. Environmental Research, 2016, 150, 541-548.	3.7	15
336	Approaches for characterizing threshold dose–response relationships for DNA-damage pathways involved in carcinogenicityin vivoand micronuclei formationin vitro. Mutagenesis, 2016, 31, 333-340.	1.0	15
337	A tissue dose-based comparative exposure assessment of manganese using physiologically based pharmacokinetic modeling—The importance of homeostatic control for an essential metal. Toxicology and Applied Pharmacology, 2017, 322, 27-40.	1.3	15
338	Addressing systematic inconsistencies between in vitro and in vivo transcriptomic mode of action signatures. Toxicology in Vitro, 2019, 58, 1-12.	1.1	15
339	The acute toxicity of single, oral doses of 1,1-dichloroethylene in the fasted, male rat: Effect of induction and inhibition of microsomal enzyme activities on mortality. Toxicology and Applied Pharmacology, 1978, 46, 227-234.	1.3	14
340	Stochastic Simulation of Hepatic Preneoplastic Foci Development for Four Chlorobenzene Congeners in a Medium-Term Bioassay. Toxicological Sciences, 2003, 73, 301-314.	1.4	14
341	A Dermatotoxicokinetic Model of Human Exposures to Jet Fuel. Toxicological Sciences, 2006, 93, 22-33.	1.4	14
342	Statistical Approaches to Identifying Androgen Response Elements. , 2007, , .		14

#	Article	IF	Citations
343	Keap1 silencing boosts lipopolysaccharide-induced transcription of interleukin 6 via activation of nuclear factor l ^o B in macrophages. Toxicology and Applied Pharmacology, 2013, 272, 697-702.	1.3	14
344	Using gene expression profiling to evaluate cellular responses in mouse lungs exposed to V2O5 and a group of other mouse lung tumorigens and non-tumorigens. Regulatory Toxicology and Pharmacology, 2015, 73, 339-347.	1.3	14
345	Strain-related differences in mouse lung gene expression over a two-year period of inhalation exposure to styrene: Relevance to human risk assessment. Regulatory Toxicology and Pharmacology, 2018, 96, 153-166.	1.3	14
346	Interspecies Scaling in Pharmacokinetics. , 1991, , 203-226.		14
347	A pharmacokinetic model describing pulsatile uptake of orally-administered carbon tetrachloride. Toxicology, 1997, 117, 25-33.	2.0	13
348	Letter. Toxicological Sciences, 2003, 74, 486-487.	1.4	13
349	Physiologically Based Pharmacokinetic and Toxicokinetic Models. , 2007, , 231-292.		13
350	Assessing Kinetic Determinants for Metabolism and Oral Uptake of Octamethylcyclotetrasiloxane (D _{<i>4</i>}) from Inhalation Chamber Studies. Inhalation Toxicology, 2008, 20, 361-373.	0.8	13
351	Update on a Pharmacokinetic-Centric Alternative Tier II Program for MMTâ€"Part I: Program Implementation and Lessons Learned. Journal of Toxicology, 2012, 2012, 1-10.	1.4	13
352	Development of 3D Dynamic Flow Model of Human Liver and Its Application to Prediction of Metabolic Clearance of 7-Ethoxycoumarin. Tissue Engineering - Part C: Methods, 2014, 20, 641-651.	1.1	13
353	Building Shared Experience to Advance Practical Application of Pathway-Based Toxicology: Liver Toxicity Mode-of-Action. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 500-19.	0.9	13
354	Cancer and nonâ€cancer risk assessment should be harmonized. Human and Ecological Risk Assessment (HERA), 1997, 3, 495-499.	1.7	12
355	Quantitative bias analysis of a reported association between perfluoroalkyl substances (PFAS) and endometriosis: The influence of oral contraceptive use. Environment International, 2017, 104, 118-121.	4.8	12
356	Application of transcriptomic data, visualization tools and bioinformatics resources for informing mode of action. Current Opinion in Toxicology, 2018, 9, 21-27.	2.6	12
357	Incorporation of <i>inÂvitro</i> metabolism data and physiologically based pharmacokinetic modeling in a risk assessment for chloroprene. Inhalation Toxicology, 2019, 31, 468-483.	0.8	12
358	Identifying qualitative differences in PPARα signaling networks in human and rat hepatocytes and their significance for next generation chemical risk assessment methods. Toxicology in Vitro, 2020, 64, 104463.	1.1	12
359	Mechanistic modeling of rodent liver tumor promotion at low levels of exposure: an example related to dose-response relationships for 2,3,7,8-tetrachlorodibenzo-p-dioxi. Human and Experimental Toxicology, 1998, 17, 683-690.	1.1	12
360	Improving toxicology testing protocols using computer simulations. Toxicology Letters, 1989, 49, 139-158.	0.4	11

#	Article	IF	Citations
361	Polychlorotrifluoroethylene (PCTFE) oligomer pharmacokinetics in Fischer 344 rats: Development of a physiologically based model*1, *2. Fundamental and Applied Toxicology, 1992, 18, 504-514.	1.9	11
362	Dose–Response Assessment Strategies for Endocrine-Active Compounds. Regulatory Toxicology and Pharmacology, 1997, 25, 292-305.	1.3	11
363	COMPARING RESPIRATORY-TRACT AND HEPATIC EXPOSURE-DOSE RELATIONSHIPS FOR METABOLIZED INHALED VAPORS: A PHARMACOKINETIC ANALYSIS. Inhalation Toxicology, 2002, 14, 835-854.	0.8	11
364	Letter. Toxicological Sciences, 2003, 74, 485-485.	1.4	11
365	Probing the Control Elements of the CYP1A1 Switching Module in H4IIE Hepatoma Cells. Toxicological Sciences, 2005, 88, 82-94.	1.4	11
366	Development of an Immunochemical Detection Method for Atrazine-Induced Albumin Adducts. Chemical Research in Toxicology, 2007, 20, 1061-1066.	1.7	11
367	Pollution Trees: Identifying Similarities among Complex Pollutant Mixtures in Water and Correlating Them to Mutagenicity. Environmental Science & Envi	4.6	11
368	Developing tools for defining and establishing pathways of toxicity. Archives of Toxicology, 2015, 89, 809-812.	1.9	11
369	Pathway Based Toxicology and Fit-for-Purpose Assays. Advances in Experimental Medicine and Biology, 2016, 856, 205-230.	0.8	11
370	Gene co-regulation and co-expression in the aryl hydrocarbon receptor-mediated transcriptional regulatory network in the mouse liver. Archives of Toxicology, 2020, 94, 113-126.	1.9	11
371	The genotoxic potential of mixed nitrosamines in drinking water involves oxidative stress and Nrf2 activation. Journal of Hazardous Materials, 2022, 426, 128010.	6.5	11
372	Enhancement of 1,1-Dichloroethylene Toxicity by Pretreatment of Fasted Male Rats with 2,3-Epoxypropan-1-01. Drug and Chemical Toxicology, 1978, 1, 63-74.	1.2	10
373	Tissue dosimetry, physiologically-based pharmacokinetic modeling, and cancer risk assessment. Cell Biology and Toxicology, 1989, 5, 405-415.	2.4	10
374	A physiologically-based pharmacokinetic model for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Chemosphere, 1989, 18, 659-664.	4.2	10
375	Pitfalls and Related Improvements of In Vivo Gas Uptake Pharmacokinetic Experimental Systems. Inhalation Toxicology, 2005, 17, 539-548.	0.8	10
376	Experimental Exposure to $1,1,1,3,3$ -Pentafluoropropane (HFC-245fa): Uptake and Disposition in Humans. Toxicological Sciences, 2010, 113, 326-336.	1.4	10
377	Bioactivation and Toxicity of Acetaminophen in a Rat Hepatocyte Micropatterned Coculture System. Journal of Biochemical and Molecular Toxicology, 2013, 27, 471-478.	1.4	10
378	Deriving an explicit hepatic clearance equation accounting for plasma protein binding and hepatocellular uptake. Toxicology in Vitro, 2013, 27, 11-15.	1.1	10

#	Article	IF	Citations
379	Inhalation dosimetry of hexamethylene diisocyanate vapor in the rat and human respiratory tracts. Inhalation Toxicology, 2013, 25, 168-177.	0.8	10
380	PBPK-Based Probabilistic Risk Assessment for Total Chlorotriazines in Drinking Water. Toxicological Sciences, 2016, 150, 269-282.	1.4	10
381	The role of fit-for-purpose assays within tiered testing approaches: A case study evaluating prioritized estrogen-active compounds in an in vitro human uterotrophic assay. Toxicology and Applied Pharmacology, 2020, 387, 114774.	1.3	10
382	A Risk Assessment Approach for Nursing Infants Exposed to Volatile Organics through the Mother's Occupational Inhalation Exposure. Applied Industrial Hygiene, 1989, 4, 21-26.	0.1	9
383	An Improved Approximation to the Exact Solution of the Two-Stage Clonal Growth Model of Cancer. Risk Analysis, 1995, 15, 467-473.	1.5	9
384	Biologically Based, Quantitative Risk Assessment of Neurotoxicants. Toxicological Sciences, 1996, 29, 18-30.	1.4	9
385	Editor's Highlight: Development of an <i>In vitro</i> Assay Measuring Uterine-Specific Estrogenic Responses for Use in Chemical Safety Assessment. Toxicological Sciences, 2016, 154, 162-173.	1.4	9
386	Using quantitative modeling tools to assess pharmacokinetic bias in epidemiological studies showing associations between biomarkers and health outcomes at low exposures. Environmental Research, 2021, 197, 111183.	3.7	9
387	PHYSIOLOGICALLY BASED CLEARANCE/EXTRACTION MODELS FOR COMPOUNDS METABOLIZED IN THE NOSE: An Example with Methyl Methacrylate. Inhalation Toxicology, 2001, 13, 397-414.	0.8	9
388	On the mechanism of the oxidation of human and rat hemoglobin by propylene glycol dinitrate. Biochemical Pharmacology, 1973, 22, 3247-3256.	2.0	8
389	A Perspective on Biologically-Based Approaches to Dioxin Risk Assessment. Risk Analysis, 1991, 11, 565-568.	1.5	8
390	Development of a Mechanism-Based Dosimetry Model for 2,4,4-Trimethyl-2-pentanol-Induced $\hat{l}\pm 2u$ -Globulin Nephropathy in Male Fischer 344 Rats. Fundamental and Applied Toxicology, 1995, 25, 124-137.	1.9	8
391	Data-Derived Uncertainty Factors: Boric Acid (BA) as a Case Study. Human and Ecological Risk Assessment (HERA), 2001, 7, 125-138.	1.7	8
392	Dose-Incidence Modeling: Consequences of Linking Quantal Measures of Response to Depletion of Critical Tissue Targets. Toxicological Sciences, 2006, 89, 331-337.	1.4	8
393	The Human Toxome Collaboratorium: A Shared Environment for Multi-Omic Computational Collaboration within a Consortium. Frontiers in Pharmacology, 2016, 6, 322.	1.6	8
394	Refinement of the oral exposure description in the cyclic siloxane PBPK model for rats and humans: Implications for exposure assessment. Toxicology Letters, 2017, 279, 125-135.	0.4	8
395	Risk science in the 21st century: a data-driven framework for incorporating new technologies into chemical safety assessment. International Journal of Risk Assessment and Management, 2017, 20, 88.	0.2	8
396	Assessing bioactivity-exposure profiles of fruit and vegetable extracts in the BioMAP profiling system. Toxicology in Vitro, 2019, 54, 41-57.	1.1	8

#	Article	IF	CITATIONS
397	Some neurotoxic properties of triethylene glycol dinitrate: A comparison with decamethonium. Toxicology and Applied Pharmacology, 1976, 36, 585-594.	1.3	7
398	Use of a Physiologically Based Pharmacokinetic Model and Computer Simulation for Retrospective Assessment of Exposure to Volatile Toxicants. Inhalation Toxicology, 1990, 2, 119-128.	0.8	7
399	Perfluoro-N-decanoic acid effects on enzymes of fatty acid metabolism. Toxicology Letters, 1990, 54, 39-46.	0.4	7
400	Under What Conditions Is Trichloroethylene Likely To Be a Carcinogen in Humans?. Human and Ecological Risk Assessment (HERA), 2001, 7, 687-716.	1.7	7
401	Improving Risk Assessment: Research Opportunities in Dose Response Modeling to Improve Risk Assessment. Human and Ecological Risk Assessment (HERA), 2002, 8, 1421-1444.	1.7	7
402	Estimating constants for metabolism of atrazine in freshly isolated rat hepatocytes by kinetic modeling. Toxicology in Vitro, 2007, 21, 492-501.	1.1	7
403	Response to "Incorporating Biological, Chemical, and Toxicological Knowledge Into Predictive Models of Toxicity― Toxicological Sciences, 2012, 130, 442-443.	1.4	7
404	Predicting cytotoxicity of complex mixtures in high cancer incidence regions of the Huai River Basin based on GC–MS spectrum with partial least squares regression. Environmental Research, 2015, 137, 391-397.	3.7	7
405	Xenobiotic Metabolism in Alginate-Encapsulated Primary Human Hepatocytes Over Long Timeframes. Applied in Vitro Toxicology, 2018, 4, 238-247.	0.6	7
406	A Kinetic Analysis of DNA-Deoxy Guanine Adducts in the Nasal Epithelium Produced by Inhaled Formaldehyde in Ratsâ€"Assessing Contributions to Adduct Production From Both Endogenous and Exogenous Sources of Formaldehyde. Toxicological Sciences, 2020, 177, 325-333.	1.4	7
407	1988 Herbert E. Stokinger Lecture: Quantitative Risk Assessment and Occupational Carcinogens. Applied Industrial Hygiene, 1988, 3, 267-273.	0.1	6
408	A Model for Pharmacokinetics and Physiological Feedback among Hormones of the Testicular–Pituitary Axis in Adult Male Rats: A Framework for Evaluating Effects of Endocrine Active Compounds. Toxicological Sciences, 1998, 45, 174-187.	1.4	6
409	Toxicokinetic Models: Where We've Been and Where We Need to Go!. Human and Ecological Risk Assessment (HERA), 2002, 8, 1375-1395.	1.7	6
410	In utero exposure to chloroquine alters sexual development in the male fetal rat. Toxicology and Applied Pharmacology, 2009, 237, 366-374.	1.3	6
411	Liquid–air partition coefficients of 1,1â€difluoroethane (HFC152a), 1,1,1â€trifluoroethane (HFC143a), 1,1,1,2â€tetrafluoroethane (HFC134a), 1,1,1,2,2â€pentafluoroethane (HFC125) and 1,1,1,3,3â€pentafluoropropa (HFC245fa). Journal of Applied Toxicology, 2010, 30, 59-62.	a n e4	6
412	A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation. Frontiers in Pharmacology, 2018, 9, 1072.	1.6	6
413	The effects of perfluorodecanoic acid on hepatic stearoyl-coenzyme A desaturase and mixed function oxidase activities in rats. Fundamental and Applied Toxicology, 1988, 11, 503-510.	1.9	5
414	A pharmacokinetic model of anaerobic in vitro carbon tetrachloride metabolism. Chemico-Biological Interactions, 1996, 101, 13-31.	1.7	5

#	Article	IF	Citations
415	Further Comments on the Bioavailability of D4. Environmental Health Perspectives, 2002, 110, A444-5; author reply A445-8.	2.8	5
416	Introduction: A Historical Perspective of the Development and Applications of PBPK Models. , 2005, , 1-18.		5
417	Combined Exposure to 3-Chloro-4-dichloromethyl-5-hydroxy-2(5H)-furanone and Microsytin-LR Increases Genotoxicity in Chinese Hamster Ovary Cells through Oxidative Stress. Environmental Science & Envi	4.6	5
418	Physiologically Based Modeling of Pharmacokinetic Interactions in Chemical Mixtures., 0,, 83-105.		5
419	The Toxicity of Single Doses of N-Nitrodimethylamine in Rodents. Drug and Chemical Toxicology, 1978, 1, 363-371.	1.2	4
420	Physiological Modeling and Cancer Risk Assessment. , 1991, , 335-354.		4
421	The Use of Biochemical and Molecular Parameters to Estimate Dose-Response Relationships at Low Levels of Exposure. Environmental Health Perspectives, 1998, 106, 349.	2.8	4
422	Biological and physiological factors involved in disposition of dioxin and related compounds. Chemosphere, 1992, 25, 3-6.	4.2	3
423	Quantitative Mechanistically Based Dose-Response Modeling with Endocrine-Active Compounds. Environmental Health Perspectives, 1999, 107, 631.	2.8	3
424	The Use of Quantitative Histological and Molecular Data for Risk Assessment and Biologically Based Model Development. Toxicologic Pathology, 2002, 30, 106-111.	0.9	3
425	Improving Risk Assessment: Toxicological Research Needs. Human and Ecological Risk Assessment (HERA), 2002, 8, 1405-1419.	1.7	3
426	Kinetic and Mechanistic Data Needs for a Human Phsiologically Based Pharmacokinetic (PBPK) Model for Acrylamide. , 2005, 561, 117-125.		3
427	Fate and effects of carbon nanotubes following inhalation. , 0, , 118-133.		3
428	Future directions in risk science. International Journal of Risk Assessment and Management, 2017, 20, 240.	0.2	3
429	Updating physiologically based pharmacokinetic models for manganese by incorporating rapid association/dissociation processes in tissues. Toxicology and Applied Pharmacology, 2019, 372, 1-10.	1.3	3
430	The TTC Data Mart: An interactive browser for threshold of toxicological concern calculations. Computational Toxicology, 2020, 15, 100128.	1.8	3
431	Time-dependent genomic response in primary human uroepithelial cells exposed to arsenite for up to 60 days. Toxicology, 2021, 461, 152893.	2.0	3
432	Quantitative Modeling in Noncancer Risk Assessment., 0,, 371-398.		3

#	Article	IF	Citations
433	Reactive Oxygen Species and Antioxidants in Pancreatic β-Cell Function – Yin and Yang. , 2014, , 3319-3337.		3
434	Application of the Risk Assessment Approaches in the USEPA Proposed Cancer Guidelines to Inorganic Arsenic., 1999,, 99-111.		3
435	Single enrichment systems possibly underestimate both exposures and biological effects of organic pollutants from drinking water. Chemosphere, 2022, 292, 133496.	4.2	3
436	PBPK Modeling: A Primer., 0,, 19-58.		3
437	Dermal Absorption of Organic Chemical Vapors in Rats and Humans. Toxicological Sciences, 1990, 14, 299-308.	1.4	2
438	Mode of Action Studies for Assessing Carcinogenic Risks Posed by Inorganic Arsenic., 1999,, 397-406.		2
439	Title is missing!. Risk Analysis, 1999, 19, 9-14.	1.5	2
440	Mixtures., 2005,, 349-373.		2
441	Pesticides and Persistent Organic Pollutants (POPs)., 2005,, 167-205.		2
442	Comment on M.V. Evans and J.C. Caldwell: Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling of in vivo gas uptake data exposure in female B6C3F1 mice, Toxicol. Appl. Pharmacol., 244, 280–290, 2010. Toxicology and Applied Pharmacology, 2010, 248, 63-64.	1.3	2
443	Prenatal PCB-153 Exposure and Decreased Birth Weight: Verner et al. Respond. Environmental Health Perspectives, 2014, 122, A89-90.	2.8	2
444	Comprehensive assessment of exposure to identify health consequences of e-waste. The Lancet Global Health, 2014, 2, e73.	2.9	2
445	Physiologically Based Pharmacokinetic and Toxicokinetic Models. , 2014, , 247-294.		2
446	Physiologically-based pharmacokinetic modeling suggests similar bioavailability of Mn from diet and drinking water. Toxicology and Applied Pharmacology, 2018, 359, 70-81.	1.3	2
447	A systematic approach to evaluate plausible modes of actions for mouse lung tumors in mice exposed to 4-methylimidozole. Regulatory Toxicology and Pharmacology, 2021, 124, 104977.	1.3	2
448	Ultrasensitive Response Motifs in Biochemical Networks., 0,, 199-217.		2
449	Characterization of the Pharmacokinetics of Gasoline Using PBPK Modeling with a Complex Mixtures Chemical Lumping Approach. Inhalation Toxicology, 2003, 15, 961-986.	0.8	2
450	NRF2-ARE signaling is responsive to haloacetonitrile-induced oxidative stress in human keratinocytes. Toxicology and Applied Pharmacology, 2022, 450, 116163.	1.3	2

#	Article	IF	CITATIONS
451	RESEARCH STRATEGY IN INDUSTRIAL TOXICOLOGY. Journal of Toxicological Sciences, 1987, 12, 223-233.	0.7	1
452	Polychlorotrifluoroethylene (PCTFE) Oligomer Pharmacokinetics in Fischer 344 Rats: Development of a Physiologically Based Model. Toxicological Sciences, 1992, 18, 504-514.	1.4	1
453	Implementation of EPA Revised Cancer Assessment Guidelines: Incorporation of Mechanistic and Pharmacokinetic Data. Toxicological Sciences, 1997, 37, 16-36.	1.4	1
454	Dermal Exposure Models. , 2005, , 375-387.		1
455	Response to Comments by Caldwell et al. on Article "Applying Mode-of-Action and Pharmacokinetic Considerations in Contemporary Cancer Risk Assessments: An Example with Trichloroethyleneâ€. Critical Reviews in Toxicology, 2006, 36, 295-298.	1.9	1
456	Integrated human multi-organ culture plate for estimating systemic toxicity in vitro. Toxicology Letters, 2016, 258, S31.	0.4	1
457	Consideration of Styrene Transcriptomic Data Informs Mouse Lung Cyp2F2-Mediated Adverse Outcome Pathway. Toxicological Sciences, 2020, 175, 3-4.	1.4	1
458	RNA-Sequencing (transcriptomic) Data Collected in Liver and Lung of Male and Female B6C3F1 Mice Exposed to Various Dose Levels of 4-Methylimidazole for 2, 5, or 28 days. Data in Brief, 2021, 38, 107420.	0.5	1
459	Computer Simulation of Chemical Carcinogenesis. , 1989, , 301-317.		1
460	Assessing modes of action, measures of tissue dose and human relevance of rodent toxicity endpoints with octamethylcyclotetrasiloxane (D4). Toxicology Letters, 2022, 357, 57-72.	0.4	1
461	Prediction of In Vivo Kinetic Constants for Metabolism of Inhaled Vapors from Kinetic Constants Measured In Vitro. Toxicological Sciences, 1981, 1, 403-409.	1.4	0
462	Pathological and Hepatic Ultrastructural Effects of a Single Dose of Perfluoro-n-decanoic Acid in the Rat, Hamster, Mouse, and Guinea Pig. Toxicological Sciences, 1987, 9, 522-540.	1.4	0
463	Relationship of hepatotoxicity and lethality with metabolic constants of BrCCl3 in rats pretreated with chlordecone, phenobarbital and mirex. European Journal of Pharmacology, 1990, 183, 1539.	1.7	0
464	Effect of Dose, Time, and Pretreatement on the Biliary Excretion and Tissue Distribution of 2,3,7,8-Tetrachlorodibenzo-p-dioxin in the Rat. Toxicological Sciences, 1993, 21, 405-411.	1.4	0
465	Development of a Mechanism-Based Dosimetry Model for 2,4,4-Trimethyl-2-pentanol-Induced α2u-Globulin Nephropathy in Male Fischer 344 Rats. Toxicological Sciences, 1995, 25, 124-137.	1.4	0
466	Response to the Letter to the Editor: "The Dose-Response Model for Dioxin". Risk Analysis, 1998, 18, 673-673.	1.5	0
467	BIOLOGICALLY BASED RISK ASSESSMENT MODEL FOR CYCLOPHOSPHAMIDE HEMATOTOXICITY IN ANIMAL SPECIES: CONCLUDING COMMENTS. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2000, 61, 543-552.	1.1	0
468	Dioxin and Related Compounds. , 2005, , 207-237.		0

#	Article	IF	Citations
469	Halogenated Alkenes., 2005,, 55-78.		О
470	Alkene and Aromatic Compounds. , 2005, , 79-117.		0
471	Reactive Vapors in the Nasal Cavity. , 2005, , 119-140.		0
472	Alkanes, Oxyhydrocarbons and Related Compounds. , 2005, , 141-166.		0
473	Halogenated Alkanes. , 2005, , 19-54.		0
474	Perinatal Pharmacokinetics., 2005,, 319-347.		0
475	Dose Response Relationship in Anti-Stress Gene Regulatory Networks. PLoS Computational Biology, 2005, preprint, e24.	1.5	0
476	Letters to the editor. Human and Experimental Toxicology, 2005, 24, 603-605.	1.1	0
477	Computational Systems Biology Modeling of Dosimetry and Cellular Response Pathways. , 0, , 155-173.		0
478	Response to "Accurate Risk-Based Chemical Screening * Relies on Robust Exposure Estimates". Toxicological Sciences, 2012, 128, 297-299.	1.4	0
479	Modeling Manganese Kinetics for Human Health Risk Assessment. Issues in Toxicology, 2014, , 322-354.	0.2	0
480	Toxicity of selected bioactivated compounds in primary rat hepatocytes cultured in micropatterned co-cultures. Toxicology Letters, 2014, 229, S49.	0.4	0
481	Nuclear Receptor-Mediated Gene Expression Changes in a Human Hepatic Micropatterned Coculture Model After Treatment with Hepatotoxic Compounds. Applied in Vitro Toxicology, 2016, 2, 8-16.	0.6	0
482	Research Career Overview. International Journal of Toxicology, 2017, 36, 4-7.	0.6	0
483	Developing Microphysiological Systems for Use as Regulatory Tools - Supplementary File. ALTEX: Alternatives To Animal Experimentation, 2014, , 1-28.	0.9	0
484	Biologically Based Pharmacokinetics and Cancer Risk Assessment. , 1991, , 79-92.		0
485	An Overview of the Outstanding Issues in the Risk Assessment of Methylene Chloride. , 1992, , 217-229.		0
486	Response of Andersen and Conolly to Reviewers Critiques (10-3-98). Human and Experimental Toxicology, 1998, 17, 715-715.	1.1	0

#	Article	IF	CITATIONS
487	Review of the three papers in the BELLE Newsletter. Human and Experimental Toxicology, 1998, 17, 701-702.	1.1	O
488	Computational Model for Iodide Economy and the HPT Axis in the Adult Rat., 0,, 251-267.		O
489	Two-Stage Clonal Growth Modeling of Cancer. , 0, , 269-282.		O
490	Statistical and Physiological Modeling of the Toxicity of Chemicals in Mixtures., 0,, 283-297.		0
491	Probabilistic Reverse Dosimetry Modeling for Interpreting Biomonitoring Data., 0,, 353-369.		O
492	Application of Physiologically Based Pharmacokinetic Modeling in Health Risk Assessment., 0,, 399-428.		0
493	Evaluation of Quantitative Models in Toxicology: Progress and Challenges. , 0, , 459-475.		O
494	Modeling Cholinesterase Inhibition. , 0, , 135-165.		0
495	Modeling of Protein Induction and Dose-Dependent Hepatic Sequestration., 0,, 167-179.		O