
S Cristobal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4260238/publications.pdf Version: 2024-02-01

S CRISTORAL

#	Article	IF	CITATIONS
1	New applications of advanced instrumental techniques for the characterization of food allergenic proteins. Critical Reviews in Food Science and Nutrition, 2022, 62, 8686-8702.	10.3	9
2	Abstract 1817: EG-011 is a first-in-class Wiskott-Aldrich syndrome protein (WASp) activator with anti-tumor activity. Cancer Research, 2022, 82, 1817-1817.	0.9	0
3	B Lymphocyte Specification Is Preceded by Extensive Epigenetic Priming in Multipotent Progenitors. Journal of Immunology, 2021, 206, 2700-2713.	0.8	6
4	Systematic analysis of chemical-protein interactions from zebrafish embryo by proteome-wide thermal shift assay, bridging the gap between molecular interactions and toxicity pathways. Journal of Proteomics, 2021, 249, 104382.	2.4	6
5	The GOLIATH Project: Towards an Internationally Harmonised Approach for Testing Metabolism Disrupting Compounds. International Journal of Molecular Sciences, 2020, 21, 3480.	4.1	35
6	PAX5 is part of a functional transcription factor network targeted in lymphoid leukemia. PLoS Genetics, 2019, 15, e1008280.	3.5	33
7	Application of Bioactive Thermal Proteome Profiling to Decipher the Mechanism of Action of the Lipid Lowering 132-Hydroxy-pheophytin Isolated from a Marine Cyanobacteria. Marine Drugs, 2019, 17, 371.	4.6	15
8	Proteomic Analysis of Endothelial Cells Exposed to Ultrasmall Nanoparticles Reveals Disruption in Paracellular and Transcellular Transport. Proteomics, 2019, 19, e1800228.	2.2	4
9	Ecotoxicoproteomics: A decade of progress in our understanding of anthropogenic impact on the environment. Journal of Proteomics, 2019, 198, 66-77.	2.4	66
10	Zinc Finger Protein 521 Regulates Early Hematopoiesis through Cell-Extrinsic Mechanisms in the Bone Marrow Microenvironment. Molecular and Cellular Biology, 2018, 38, .	2.3	7
11	Surface proteomics on nanoparticles: a step to simplify the rapid prototyping of nanoparticles. Nanoscale Horizons, 2017, 2, 55-64.	8.0	8
12	Proteomics in Aquaculture. , 2017, , 279-295.		6
13	Dose-dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non-cytotoxic levels. Journal of Nanobiotechnology, 2016, 14, 22.	9.1	101
14	Proteomics and the search for welfare and stress biomarkers in animal production in the one-health context. Molecular BioSystems, 2016, 12, 2024-2035.	2.9	56
15	Shotgun proteomics to unravel marine mussel (Mytilus edulis) response to long-term exposure to low salinity and propranolol in a Baltic Sea microcosm. Journal of Proteomics, 2016, 137, 97-106.	2.4	39
16	Proteomic analyses of early response of unicellular eukaryotic microorganism <i>Tetrahymena thermophila</i> exposed to TiO ₂ particles. Nanotoxicology, 2016, 10, 542-556.	3.0	15
17	Animal board invited review: advances in proteomics for animal and food sciences. Animal, 2015, 9, 1-17.	3.3	143
18	Shotgun analysis of the marine mussel <i>Mytilus edulis</i> hemolymph proteome and mapping the innate immunity elements. Proteomics, 2015, 15, 4021-4029.	2.2	40

S CRISTOBAL

#	Article	IF	CITATIONS
19	Proteomic and lipidomic analysis of primary mouse hepatocytes exposed to metal and metal oxide nanoparticles. Journal of Integrated OMICS, 2015, 5, .	0.5	3
20	Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics, 2015, 16, 341.	2.8	159
21	Vascular toxicity of ultra-small TiO2 nanoparticles and single walled carbon nanotubes inÂvitro and inÂvivo. Biomaterials, 2015, 63, 1-13.	11.4	59
22	Assessment of functionalized iron oxide nanoparticles in vitro: introduction to integrated nanoimpact index. Environmental Science: Nano, 2015, 2, 380-394.	4.3	9
23	Pre-Anchoring of Pin1 to Unphosphorylated c-Myc in a Fuzzy Complex Regulates c-Myc Activity. Structure, 2015, 23, 2267-2279.	3.3	48
24	The effects of engineered nanoparticles on the cellular structure and growth of <i>Saccharomyces cerevisiae</i> . Nanotoxicology, 2014, 8, 363-373.	3.0	40
25	Folding of Aquaporin 1: Multiple evidence that helix 3 can shift out of the membrane core. Protein Science, 2014, 23, 981-992.	7.6	18
26	The Positive Inside Rule Is Stronger When Followed by a Transmembrane Helix. Journal of Molecular Biology, 2014, 426, 2982-2991.	4.2	11
27	High-Throughput Proteomics: A New Tool for Quality and Safety in Fishery Products. Current Protein and Peptide Science, 2014, 15, 118-133.	1.4	18
28	Membrane protein shaving with thermolysin can be used to evaluate topology predictors. Proteomics, 2013, 13, 1467-1480.	2.2	10
29	Environmental OMICS: Current Status and Future Directions. Journal of Integrated OMICS, 2013, 3, .	0.5	22
30	Proteomic research in bivalves. Journal of Proteomics, 2012, 75, 4346-4359.	2.4	94
31	Quantitative subproteomic analysis of age-related changes in mouse liver peroxisomes by iTRAQ LC–MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3393-3400.	2.3	12
32	Membrane Insertion of Marginally Hydrophobic Transmembrane Helices Depends on Sequence Context. Journal of Molecular Biology, 2010, 396, 221-229.	4.2	82
33	Repositioning of Transmembrane α-Helices during Membrane Protein Folding. Journal of Molecular Biology, 2010, 397, 190-201.	4.2	59
34	Peroxisomal proteomics: Biomonitoring in mussels after the Prestige's oil spill. Marine Pollution Bulletin, 2009, 58, 1815-1826.	5.0	40
35	Proteomic study on gender differences in aging kidney of mice. Proteome Science, 2009, 7, 16.	1.7	21
36	Proteomic Analysis of Mussels Exposed to Fresh and Weathered Prestige's Oil. Journal of Proteomics and Bioinformatics, 2009, 02, 255-261.	0.4	7

S CRISTOBAL

#	Article	IF	CITATIONS
37	Proteomics-Based Method for Risk Assessment of Peroxisome Proliferating Pollutants in the Marine Environment. Methods in Molecular Biology, 2008, 410, 123-135.	0.9	5
38	Peroxisomal proteomic approach for protein profiling in blue mussels (Mytilus edulis) exposed to crude oil. Biomarkers, 2007, 12, 47-60.	1.9	27
39	Proteomics-Based Method for the Assessment of Marine Pollution Using Liquid Chromatography Coupled with Two-Dimensional Electrophoresis. Journal of Proteome Research, 2007, 6, 2094-2104.	3.7	47
40	Age-related subproteomic analysis of mouse liver and kidney peroxisomes. Proteome Science, 2007, 5, 19.	1.7	15
41	Quantitative proteomic comparison of mouse peroxisomes from liver and kidney. Proteomics, 2007, 7, 1916-1928.	2.2	41
42	Identification of Proteomic Signatures of Exposure to Marine Pollutants in Mussels (Mytilus edulis). Molecular and Cellular Proteomics, 2006, 5, 1274-1285.	3.8	153
43	Peroxisomal proteomics, a new tool for risk assessment of peroxisome proliferating pollutants in the marine environment. Proteomics, 2005, 5, 3954-3965.	2.2	57
44	In Silico Prediction of the Peroxisomal Proteome in Fungi, Plants and Animals. Journal of Molecular Biology, 2003, 330, 443-456.	4.2	103
45	Immunolocalization of a novel cholesteryl ester hydrolase in the endoplasmic reticulum of murine and human hepatocytes. Hepatology, 2001, 33, 662-667.	7.3	11
46	A study of quality measures for protein threading models. BMC Bioinformatics, 2001, 2, 5.	2.6	174
47	The Signal Recognition Particle-targeting Pathway Does Not Necessarily Deliver Proteins to the Sec-translocase inEscherichia coli. Journal of Biological Chemistry, 1999, 274, 20068-20070.	3.4	37
48	Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO Journal, 1999, 18, 2982-2990.	7.8	249
49	Purification and properties of a cholesteryl ester hydrolase from rat liver microsomes. Journal of Lipid Research, 1999, 40, 715-725.	4.2	28
50	Purification and properties of a cholesteryl ester hydrolase from rat liver microsomes. Journal of Lipid Research, 1999, 40, 715-25.	4.2	25